| 1 | /*************************************************************************** |
|---|
| 2 | * Copyright (c) 2006-2012, Broadcom Corporation |
|---|
| 3 | * All Rights Reserved |
|---|
| 4 | * Confidential Property of Broadcom Corporation |
|---|
| 5 | * |
|---|
| 6 | * THIS SOFTWARE MAY ONLY BE USED SUBJECT TO AN EXECUTED SOFTWARE LICENSE |
|---|
| 7 | * AGREEMENT BETWEEN THE USER AND BROADCOM. YOU HAVE NO RIGHT TO USE OR |
|---|
| 8 | * EXPLOIT THIS MATERIAL EXCEPT SUBJECT TO THE TERMS OF SUCH AN AGREEMENT. |
|---|
| 9 | * |
|---|
| 10 | * $brcm_Workfile: bchp_avs.c $ |
|---|
| 11 | * $brcm_Revision: Hydra_Software_Devel/32 $ |
|---|
| 12 | * $brcm_Date: |
|---|
| 13 | * |
|---|
| 14 | * Module Description: |
|---|
| 15 | * See Module Overview below. |
|---|
| 16 | * |
|---|
| 17 | * Revision History: |
|---|
| 18 | * |
|---|
| 19 | * $brcm_Log: /magnum/basemodules/chp/7425/bchp_avs.c $ |
|---|
| 20 | * |
|---|
| 21 | * Hydra_Software_Devel/32 3/22/12 6:47p rjlewis |
|---|
| 22 | * SW7425-2218: Added support for Get Data extension function. Added |
|---|
| 23 | * print to startup indicating AVS enabled in build. |
|---|
| 24 | * |
|---|
| 25 | * Hydra_Software_Devel/31 3/5/12 12:53p rjlewis |
|---|
| 26 | * SW7346-117: don't print trace message if in standby -- annoying. |
|---|
| 27 | * Restore working registers as part of restore process. |
|---|
| 28 | * Print a message on close to see when close is being called. |
|---|
| 29 | * |
|---|
| 30 | * Hydra_Software_Devel/30 3/5/12 12:08p rjlewis |
|---|
| 31 | * SW7346-117: Don't save/restore AVS registers if AVS not active (not |
|---|
| 32 | * enabled in CFE). |
|---|
| 33 | * |
|---|
| 34 | * Hydra_Software_Devel/29 3/2/12 6:26p rjlewis |
|---|
| 35 | * SW7435-43: support Ax parts that use second generation AVS. |
|---|
| 36 | * SW7552-219: fix support for Bx parts that use first generation AVS. |
|---|
| 37 | * SW7425-2218: added support for new extension test function. |
|---|
| 38 | * |
|---|
| 39 | * Hydra_Software_Devel/28 2/27/12 1:38p erickson |
|---|
| 40 | * SW7346-117: must call BDBG_OBJECT_DESTROY before freeing memory |
|---|
| 41 | * |
|---|
| 42 | * Hydra_Software_Devel/27 2/24/12 1:46p rjlewis |
|---|
| 43 | * SW7346-117: Added BDBG_OBJECT support (so I don't get a bad handle). |
|---|
| 44 | * If thresholds set in PI then indicate this on next start. |
|---|
| 45 | * |
|---|
| 46 | * Hydra_Software_Devel/26 2/23/12 11:35a rjlewis |
|---|
| 47 | * SW7346-117: AON registers different on 7358. |
|---|
| 48 | * |
|---|
| 49 | * Hydra_Software_Devel/25 2/17/12 6:15p rjlewis |
|---|
| 50 | * SW7346-117: Added support for S3 power management and ability to allow |
|---|
| 51 | * CFE AVS 0.5 to set thresholds. |
|---|
| 52 | * SW7425-2218: made test functions global to support test mode calls. |
|---|
| 53 | * |
|---|
| 54 | * Hydra_Software_Devel/24 2/6/12 1:38p rjlewis |
|---|
| 55 | * SW7425-2218: Added support for lock and unlock |
|---|
| 56 | * |
|---|
| 57 | * Hydra_Software_Devel/23 1/12/12 11:08a rjlewis |
|---|
| 58 | * SW7425-2146: can't use stdlib 'abs' function (generates warning when |
|---|
| 59 | * include file used and warning when no proto). |
|---|
| 60 | * |
|---|
| 61 | * Hydra_Software_Devel/22 1/11/12 5:43p rjlewis |
|---|
| 62 | * SW7425-2146: don't allow the voltage to exceed min/max (correct if it |
|---|
| 63 | * ever does). |
|---|
| 64 | * SW7425-2111: remember last dac written -- if it ever gets stepped on, |
|---|
| 65 | * put it back. |
|---|
| 66 | * Fix a bug in the lowest remote oscillator -- was not using the correct |
|---|
| 67 | * oscillator type for thresholds. |
|---|
| 68 | * |
|---|
| 69 | * Hydra_Software_Devel/21 1/9/12 4:23p rjlewis |
|---|
| 70 | * SW7552-187: don't use second generation process on 7552 Bx parts. |
|---|
| 71 | * |
|---|
| 72 | * Hydra_Software_Devel/20 12/16/11 3:26p rjlewis |
|---|
| 73 | * SW7346-117: Update the min values and add support for using MIN/MAX DAC |
|---|
| 74 | * values. |
|---|
| 75 | * |
|---|
| 76 | * Hydra_Software_Devel/19 10/26/11 3:22p rjlewis |
|---|
| 77 | * SW7346-527: fixed warning. |
|---|
| 78 | * |
|---|
| 79 | * Hydra_Software_Devel/18 10/7/11 11:07a rjlewis |
|---|
| 80 | * SW7346-117: removed CR in debug prints, changed err to wrn, added new |
|---|
| 81 | * wrn to say AVS enabled. |
|---|
| 82 | * |
|---|
| 83 | * Hydra_Software_Devel/17 9/15/11 11:03a rjlewis |
|---|
| 84 | * SW7346-117: make the oscillator counts automatic. |
|---|
| 85 | * |
|---|
| 86 | * Hydra_Software_Devel/16 9/12/11 5:20p rjlewis |
|---|
| 87 | * SW7346-117: Fixed seg fault due to chip revision not available until |
|---|
| 88 | * later. |
|---|
| 89 | * |
|---|
| 90 | * Hydra_Software_Devel/15 9/12/11 10:08a rjlewis |
|---|
| 91 | * SW7346-117: Updated to support B0 parts. |
|---|
| 92 | * |
|---|
| 93 | * Hydra_Software_Devel/14 9/2/11 9:51a rjlewis |
|---|
| 94 | * SW7346-117: handle the parts that didn't implement some oscillators. |
|---|
| 95 | * |
|---|
| 96 | * Hydra_Software_Devel/13 8/30/11 3:52p rjlewis |
|---|
| 97 | * SW7346-117: Enabled the constant voltage scheme for FF parts. |
|---|
| 98 | * |
|---|
| 99 | * Hydra_Software_Devel/12 8/30/11 2:31p rjlewis |
|---|
| 100 | * SW7346-117: decimal voltage debug printout needs to right justify the |
|---|
| 101 | * fractional part. |
|---|
| 102 | * |
|---|
| 103 | * Hydra_Software_Devel/11 8/29/11 3:20p rjlewis |
|---|
| 104 | * SW7346-117: temperature can go negative (can't use unsigned). |
|---|
| 105 | * |
|---|
| 106 | * Hydra_Software_Devel/10 8/26/11 5:44p rjlewis |
|---|
| 107 | * SW7346-117: fix warning and add new optional constant voltage routine |
|---|
| 108 | * for FF parts (disabled). |
|---|
| 109 | * |
|---|
| 110 | * Hydra_Software_Devel/9 8/26/11 12:10p rjlewis |
|---|
| 111 | * SW7346-117: resave PV value to threshold if not there (older CFE) and |
|---|
| 112 | * don't print interrupt value anymore. |
|---|
| 113 | * |
|---|
| 114 | * Hydra_Software_Devel/8 8/22/11 3:49p rjlewis |
|---|
| 115 | * SW7346-117: restore MIN/MAX_DAC registers BEFORE attempting to enable |
|---|
| 116 | * writing to DAC register. |
|---|
| 117 | * |
|---|
| 118 | * Hydra_Software_Devel/7 8/19/11 3:39p rjlewis |
|---|
| 119 | * SW7346-117: make sure we get the handles we require. Number of remotes |
|---|
| 120 | * is not reflected correctly in RDB on 7358. |
|---|
| 121 | * |
|---|
| 122 | * Hydra_Software_Devel/6 8/16/11 3:35p rjlewis |
|---|
| 123 | * SW7346-117: updated the min/max supported voltage values. |
|---|
| 124 | * |
|---|
| 125 | * Hydra_Software_Devel/5 8/16/11 11:28a rjlewis |
|---|
| 126 | * SW7346-117: passing wrong parameter to Release resounce. |
|---|
| 127 | * |
|---|
| 128 | * Hydra_Software_Devel/4 8/15/11 1:37p rjlewis |
|---|
| 129 | * SW7346-117: Added support for power management. |
|---|
| 130 | * |
|---|
| 131 | * Hydra_Software_Devel/3 8/10/11 11:25a rjlewis |
|---|
| 132 | * SW7346-117: Can't use stdlib either. Use local version of abs. |
|---|
| 133 | * |
|---|
| 134 | * Hydra_Software_Devel/2 8/10/11 9:49a rjlewis |
|---|
| 135 | * SW7346-117: handle case where using wrong CFE. Fix kernel mode compile |
|---|
| 136 | * error. |
|---|
| 137 | * |
|---|
| 138 | * Hydra_Software_Devel/1 8/4/11 7:23p rjlewis |
|---|
| 139 | * SW7346-117: Adding support for AVS hardware. |
|---|
| 140 | * |
|---|
| 141 | * |
|---|
| 142 | ***************************************************************************/ |
|---|
| 143 | |
|---|
| 144 | #if 0 |
|---|
| 145 | #include <stdio.h> |
|---|
| 146 | #include <string.h> |
|---|
| 147 | #include <stdint.h> |
|---|
| 148 | #include <stdlib.h> /*for abs*/ |
|---|
| 149 | #endif |
|---|
| 150 | |
|---|
| 151 | #include "bstd.h" |
|---|
| 152 | #include "bdbg.h" |
|---|
| 153 | #include "bkni.h" |
|---|
| 154 | #include "bchp.h" |
|---|
| 155 | #include "bchp_priv.h" |
|---|
| 156 | #ifdef BCHP_PWR_SUPPORT |
|---|
| 157 | #include "bchp_pwr.h" |
|---|
| 158 | #include "bchp_pwr_resources.h" |
|---|
| 159 | #include "bchp_aon_ctrl.h" |
|---|
| 160 | #endif |
|---|
| 161 | |
|---|
| 162 | BDBG_MODULE(BCHP_AVS); |
|---|
| 163 | |
|---|
| 164 | #include "bchp_avs.h" |
|---|
| 165 | #include "bchp_avs_priv.h" |
|---|
| 166 | |
|---|
| 167 | /* TODO: |
|---|
| 168 | ** 1) If don't need LEAVE_ENABLE_SET then remove it and all referenced code. |
|---|
| 169 | ** 2) Add support for saving and checking registers on each "monitor" call (using AvsCheckSaveRegisters). |
|---|
| 170 | ** 3) Add more parameter checking (now that we're exporting more functions for testing). |
|---|
| 171 | */ |
|---|
| 172 | |
|---|
| 173 | /* Compile time options: */ |
|---|
| 174 | /*#define LEAVE_ENABLE_SET*/ /* this is needed because delay required after enable is too long */ |
|---|
| 175 | |
|---|
| 176 | /* There are two generations of AVS hardware that require different handling. */ |
|---|
| 177 | /* Statically decide which part uses which generation of AVS hardware. */ |
|---|
| 178 | /* Handle older parts or parts that have not updated to 2nd generation AVS hardware. */ |
|---|
| 179 | #if (((BCHP_CHIP==7231 || BCHP_CHIP==7344 || BCHP_CHIP==7346 || BCHP_CHIP==7422 || BCHP_CHIP==7425) && (BCHP_VER < BCHP_VER_B0)) \ |
|---|
| 180 | || (BCHP_CHIP==7358 && BCHP_VER < BCHP_VER_B0) /* we're at A2 -- they should use 2nd bump in Bx revs */ \ |
|---|
| 181 | || (BCHP_CHIP==7552 && BCHP_VER <= BCHP_VER_B0) /* we're already at B0 revision using 1st bump */ \ |
|---|
| 182 | ) |
|---|
| 183 | #define AVS_GENERATION 1 |
|---|
| 184 | #else |
|---|
| 185 | #define AVS_GENERATION 2 /* all other parts default to 2nd generation */ |
|---|
| 186 | #endif |
|---|
| 187 | |
|---|
| 188 | /* The 7358 uses different design for AON registers (leave out until they decide how to use them) */ |
|---|
| 189 | #if (BCHP_CHIP!=7358) |
|---|
| 190 | #define SAVE_TO_AON /* save the DAC_CODE and PVT_MON_CTRL registers to AON memory space as part of S3 shutdown */ |
|---|
| 191 | #endif |
|---|
| 192 | |
|---|
| 193 | /* We need to store four things across re-starts of the API: |
|---|
| 194 | ** 1) the original predicted voltage (also set by CFE) |
|---|
| 195 | ** 2) the fact that the thresolds were set by CFE |
|---|
| 196 | ** 3) the original DAC value set by CFE |
|---|
| 197 | ** 4) the final DAC value that was being used before the close |
|---|
| 198 | ** |
|---|
| 199 | ** We reserve the first two sets (four registers) of the central oscillator thresholds for storing information across restarts of the PI. |
|---|
| 200 | ** CFE uses the first lower threshold (threshold1_0) for storing the predicted voltage value. This is used to identify FF parts. |
|---|
| 201 | ** FF parts requires a special initialization process so that we can still run the part at a lower voltage than if we used the default. |
|---|
| 202 | ** The second lower threshold (threshold1_1) is used by CFE to store a flag to indicate that it already initialized the threshold registers at startup. |
|---|
| 203 | ** |
|---|
| 204 | ** Because we always bump the starting DAC value by a margin on initialization we would be bumping the voltage on each subsequent |
|---|
| 205 | ** run allowing the voltage to "creep" up un-necessarily. In order to correct for this, two central oscillator are reserved. |
|---|
| 206 | ** We use the first upper threshold (threshold2_0) for storing the original DAC value and restore it on each subsequent run. |
|---|
| 207 | ** If we closed properly we'll restart at the voltage value (DAC value) before the close. |
|---|
| 208 | ** We use the second upper threshold (threshold2_1) for storing the close DAC value and restore it on each subsequent run. |
|---|
| 209 | ** If we didn't close properly then we didn't get a chance to save the DAC so we'll revert to the DAC value set by CFE. |
|---|
| 210 | ** |
|---|
| 211 | */ |
|---|
| 212 | #define STARTING_OSCILLATOR 2 /* skip oscillator sets 0 and 1 when using central oscillator thresholds */ |
|---|
| 213 | |
|---|
| 214 | /* This is where CFE stored the predicted voltage value on startup. |
|---|
| 215 | ** This is used to determine if the part is FF part (in whic case we process the voltage differently. |
|---|
| 216 | ** THIS MUST MATCH THE REGISTER AND VALUE FROM CFE (so if you change it then you'll need to change CFE too!). |
|---|
| 217 | */ |
|---|
| 218 | #define PREDICTED_VOLTAGE BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 |
|---|
| 219 | |
|---|
| 220 | /* This is where CFE set the flag that indicates that it set the thresholds already (and we don't need to do that here). |
|---|
| 221 | ** THIS MUST MATCH THE REGISTER AND VALUE FROM CFE (so if you change it then you'll need to change CFE too!). |
|---|
| 222 | ** The value MUST match or we'll re-do the setting of the thresholds. |
|---|
| 223 | ** That means backward compatibility with CFEs that don't have this update. |
|---|
| 224 | */ |
|---|
| 225 | #define THRESHOLDS_SET BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_1 |
|---|
| 226 | |
|---|
| 227 | /* This is where we're going to save the starting DAC value for subsequent restarts */ |
|---|
| 228 | #define SAVED_DAC BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 |
|---|
| 229 | |
|---|
| 230 | /* This is where we saved the closing DAC value when we (cleanly) shutdown */ |
|---|
| 231 | #define CLOSED_DAC BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_1 |
|---|
| 232 | |
|---|
| 233 | /* We need to get some data from CFE and also provide some data to CFE. |
|---|
| 234 | ** We use some of the unused threshold registers to pass data (CFE->PI) and some AON registers to pass data back (PI->CFE). |
|---|
| 235 | ** This magic value is used to indicate that the data is valid and not some random junk written to a register. |
|---|
| 236 | ** This MUST match the value used by CFE -- do not change it! |
|---|
| 237 | */ |
|---|
| 238 | #define AVS_CFE_MAGIC 0x7735 /* ("sell" upside-down) this MUST match the value in CFE */ |
|---|
| 239 | #define AVS_AVS_MAGIC 0x5377 /* use this version to know WE set the thresholds */ |
|---|
| 240 | |
|---|
| 241 | /*#include "bchp_avs_asb_registers.h"*/ |
|---|
| 242 | #include "bchp_avs_hw_mntr.h" |
|---|
| 243 | #include "bchp_avs_pvt_mntr_config.h" |
|---|
| 244 | #include "bchp_avs_ro_registers_0.h" |
|---|
| 245 | #include "bchp_avs_ro_registers_1.h" |
|---|
| 246 | #include "bchp_avs_rosc_threshold_1.h" |
|---|
| 247 | #include "bchp_avs_rosc_threshold_2.h" |
|---|
| 248 | |
|---|
| 249 | #if (BCHP_CHIP == 7358) |
|---|
| 250 | #define MAX_REMOTE_OSCILLATORS 32 /* RDB shows 38 but really only 32 working */ |
|---|
| 251 | #endif |
|---|
| 252 | |
|---|
| 253 | /* Dynamically configure the number of central oscillators based on the shifts available */ |
|---|
| 254 | #ifndef MAX_CENTRAL_OSCILLATORS |
|---|
| 255 | #if defined(BCHP_AVS_HW_MNTR_MEASUREMENTS_INIT_CEN_ROSC_1) /* defined if > 32 */ |
|---|
| 256 | #if defined(BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_1_reserved0_SHIFT) /* defined if > 32 and < 64 */ |
|---|
| 257 | #define MAX_CENTRAL_OSCILLATORS (32 + BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_1_reserved0_SHIFT) |
|---|
| 258 | #else |
|---|
| 259 | #define MAX_CENTRAL_OSCILLATORS 64 /* is exactly 64 */ |
|---|
| 260 | #endif |
|---|
| 261 | #elif defined(BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_0_reserved0_SHIFT) /* defined if < 32 */ |
|---|
| 262 | #define MAX_CENTRAL_OSCILLATORS BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_0_reserved0_SHIFT |
|---|
| 263 | #else |
|---|
| 264 | #define MAX_CENTRAL_OSCILLATORS 32 /* is exactly 32 */ |
|---|
| 265 | #endif |
|---|
| 266 | #endif |
|---|
| 267 | |
|---|
| 268 | /* Dynamically configure the number of remote oscillators based on the shifts available */ |
|---|
| 269 | #ifndef MAX_REMOTE_OSCILLATORS |
|---|
| 270 | #if defined(BCHP_AVS_HW_MNTR_MEASUREMENTS_INIT_RMT_ROSC_1) /* defined if > 32 */ |
|---|
| 271 | #if defined(BCHP_AVS_HW_MNTR_MEASUREMENTS_INIT_RMT_ROSC_1_reserved0_SHIFT) /* defined if > 32 and < 64 */ |
|---|
| 272 | #define MAX_REMOTE_OSCILLATORS (32 + BCHP_AVS_HW_MNTR_MEASUREMENTS_INIT_RMT_ROSC_1_reserved0_SHIFT) |
|---|
| 273 | #else |
|---|
| 274 | #define MAX_REMOTE_OSCILLATORS 64 /* is exactly 64 */ |
|---|
| 275 | #endif |
|---|
| 276 | #elif defined(BCHP_AVS_HW_MNTR_MEASUREMENTS_INIT_RMT_ROSC_0_reserved0_SHIFT) /* defined if < 32 */ |
|---|
| 277 | #define MAX_REMOTE_OSCILLATORS BCHP_AVS_HW_MNTR_MEASUREMENTS_INIT_RMT_ROSC_0_reserved0_SHIFT |
|---|
| 278 | #else |
|---|
| 279 | #define MAX_REMOTE_OSCILLATORS 32 /* is exactly 32 */ |
|---|
| 280 | #endif |
|---|
| 281 | #endif |
|---|
| 282 | |
|---|
| 283 | /* Note: the above operations will not work if number of oscillators is greater than 64. Use same technique if that ever happens. */ |
|---|
| 284 | |
|---|
| 285 | /* We're not allowed to use any of the standard library macros or functions due to build conflicts */ |
|---|
| 286 | #define AvsAbs(x) (((x)<0)?-(x):(x)) |
|---|
| 287 | |
|---|
| 288 | /* In order to get rid of the floating points, do the math and print the parts */ |
|---|
| 289 | #define sign(f) ((f)<0)?'-':' ' /*space means positive*/ |
|---|
| 290 | #define mantissa(f) (AvsAbs((int)(f)/1000)) |
|---|
| 291 | #define fraction(f) (AvsAbs((int)((f) - (f)/1000*1000))) |
|---|
| 292 | |
|---|
| 293 | BDBG_OBJECT_ID(bchp_avs_t); |
|---|
| 294 | |
|---|
| 295 | /* This is the contect for this driver -- users use an opaque handle */ |
|---|
| 296 | struct BCHP_P_AvsContext { |
|---|
| 297 | BDBG_OBJECT(bchp_avs_t) /* used to check if structure is valid */ |
|---|
| 298 | |
|---|
| 299 | BCHP_Handle hChip; /* the handle for the chip open */ |
|---|
| 300 | BREG_Handle hRegister; /* the register handle provided on open */ |
|---|
| 301 | |
|---|
| 302 | int dac_step_size; /* this is the maximum amount (+ or -) we'll change the DAC on each pass */ |
|---|
| 303 | |
|---|
| 304 | uint32_t last_dac; /* keep track of the last value written to the DAC */ |
|---|
| 305 | uint32_t last_temp; /* last data read from temperature register */ |
|---|
| 306 | uint32_t last_voltage_1p1_0, last_voltage_1p1_1, last_voltage_0p99, last_voltage_2p75, last_voltage_3p63; |
|---|
| 307 | |
|---|
| 308 | uint32_t V_0p99, V_1p1_0, V_1p1_1, V_2p75, V_3p63; /* last values read from voltage registers */ |
|---|
| 309 | |
|---|
| 310 | uint32_t original_dac; /* value of DAC set by CFE (or by our last run if run multiple times) */ |
|---|
| 311 | uint32_t saved_predicted; /* value of predicted voltage saved by CFE */ |
|---|
| 312 | |
|---|
| 313 | uint64_t central_exclude_mask; /* running exclude lists for this part */ |
|---|
| 314 | uint64_t remote_exclude_mask; |
|---|
| 315 | |
|---|
| 316 | bool ff_part; /* flag indicating that part requires special processing */ |
|---|
| 317 | bool lock_enabled; /* flag to indicate AVS lock is enabled */ |
|---|
| 318 | bool thresholdsSet; /* flag to indicate that the threshold values were set in CFE */ |
|---|
| 319 | |
|---|
| 320 | bool initialized; /* flag telling me that this structure has been properly initialized */ |
|---|
| 321 | unsigned initialization_step; /* need to break down initialization into multiple steps */ |
|---|
| 322 | |
|---|
| 323 | bool standby; /* set to true to pause the AVS processing (low-power mode) */ |
|---|
| 324 | |
|---|
| 325 | bool doOnce; /* if printing the "beginning" status (debug) */ |
|---|
| 326 | |
|---|
| 327 | bool outOfBounds; /* temp -- so we only print this once */ |
|---|
| 328 | |
|---|
| 329 | /* These are the registers that need to be saved/restored when entering/exiting low power mode */ |
|---|
| 330 | struct { |
|---|
| 331 | uint32_t dac, min_dac, max_dac; |
|---|
| 332 | uint32_t central_thresholds_min[MAX_CENTRAL_OSCILLATORS]; |
|---|
| 333 | uint32_t central_thresholds_max[MAX_CENTRAL_OSCILLATORS]; |
|---|
| 334 | uint32_t remote_hvt_min, remote_hvt_max; |
|---|
| 335 | uint32_t remote_svt_min, remote_svt_max; |
|---|
| 336 | |
|---|
| 337 | uint32_t sw_controls; |
|---|
| 338 | uint32_t default_cent0; |
|---|
| 339 | uint32_t default_cent1; |
|---|
| 340 | uint32_t measurement; |
|---|
| 341 | |
|---|
| 342 | bool valid; |
|---|
| 343 | } saved_registers; |
|---|
| 344 | }; |
|---|
| 345 | |
|---|
| 346 | /* This defines which of the voltages we're using for measurements (and to return) */ |
|---|
| 347 | #define last_voltage last_voltage_1p1_0 |
|---|
| 348 | |
|---|
| 349 | /* forward references: */ |
|---|
| 350 | static void AvsInitialize(BCHP_P_AvsHandle handle); |
|---|
| 351 | static void AvsUpdate(BCHP_P_AvsHandle handle); |
|---|
| 352 | static void AvsSaveClosedDAC(BCHP_P_AvsHandle handle); |
|---|
| 353 | static void AvsSaveRegisters(BCHP_P_AvsHandle handle); |
|---|
| 354 | static void AvsRestoreRegisters(BCHP_P_AvsHandle handle, bool restore); |
|---|
| 355 | /*static int AvsCheckSaveRegisters(BCHP_P_AvsHandle handle);*/ |
|---|
| 356 | |
|---|
| 357 | /*\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\*/ |
|---|
| 358 | |
|---|
| 359 | BERR_Code BCHP_P_AvsOpen ( |
|---|
| 360 | BCHP_P_AvsHandle *phHandle, /* [out] returns new handle on success */ |
|---|
| 361 | BCHP_Handle hChip) /* [in] handle for chip data */ |
|---|
| 362 | { |
|---|
| 363 | BCHP_P_AvsHandle handle; |
|---|
| 364 | BERR_Code rc = BERR_SUCCESS; |
|---|
| 365 | |
|---|
| 366 | /* Make sure they gave me a place to return the handle and valid handles I'll need */ |
|---|
| 367 | BDBG_ASSERT(phHandle); |
|---|
| 368 | BDBG_ASSERT(hChip); |
|---|
| 369 | BDBG_ASSERT(hChip->regHandle); |
|---|
| 370 | |
|---|
| 371 | BDBG_ENTER(BCHP_AvsOpen); |
|---|
| 372 | |
|---|
| 373 | /* If error ocurr user get a NULL *phHandle */ |
|---|
| 374 | *phHandle = NULL; |
|---|
| 375 | |
|---|
| 376 | /* Alloc the base chip context. */ |
|---|
| 377 | handle = (BCHP_P_AvsHandle) (BKNI_Malloc(sizeof(struct BCHP_P_AvsContext))); |
|---|
| 378 | if (!handle) |
|---|
| 379 | { |
|---|
| 380 | return BERR_TRACE(BERR_OUT_OF_SYSTEM_MEMORY); |
|---|
| 381 | } |
|---|
| 382 | |
|---|
| 383 | /* Clear out the context and set defaults. */ |
|---|
| 384 | BKNI_Memset((void*)handle, 0x0, sizeof(struct BCHP_P_AvsContext)); |
|---|
| 385 | BDBG_OBJECT_SET(handle, bchp_avs_t); |
|---|
| 386 | |
|---|
| 387 | /* Need register handle for accessing my registers. */ |
|---|
| 388 | handle->hRegister = hChip->regHandle; |
|---|
| 389 | handle->hChip = hChip; |
|---|
| 390 | |
|---|
| 391 | #ifdef BCHP_PWR_RESOURCE_AVS |
|---|
| 392 | rc = BCHP_PWR_AcquireResource(hChip, BCHP_PWR_RESOURCE_AVS); |
|---|
| 393 | if (rc != BERR_SUCCESS) { |
|---|
| 394 | BDBG_ERR(("Failed to acquire the AVS resource")); |
|---|
| 395 | BKNI_Free(handle); |
|---|
| 396 | return BERR_TRACE(BERR_UNKNOWN); |
|---|
| 397 | } |
|---|
| 398 | #endif |
|---|
| 399 | |
|---|
| 400 | /* This is the amount we'll change the value written to the DAC. |
|---|
| 401 | ** The step is programmable and, if optimizations are enabled, changes once we converge. |
|---|
| 402 | ** This ensures that we should converge or recover quickly (or more quickly) and then adjust more slowly after we converge. |
|---|
| 403 | ** With optimization enabled, the dac_step_size will change when required. |
|---|
| 404 | */ |
|---|
| 405 | #define DEFAULT_DAC_STEP_SIZE 1 |
|---|
| 406 | handle->dac_step_size = DEFAULT_DAC_STEP_SIZE; |
|---|
| 407 | |
|---|
| 408 | /* We're not initialized until we complete the initialization process */ |
|---|
| 409 | handle->initialized = false; |
|---|
| 410 | |
|---|
| 411 | *phHandle = handle; /*success -- return the handle*/ |
|---|
| 412 | |
|---|
| 413 | /* Always print something so we know that AVS is enabled in this build! */ |
|---|
| 414 | /* The problem with this is that even if its included it doesn't mean that nexus has it enabled -- needs to be part of Monitor function */ |
|---|
| 415 | /*BDBG_WRN(("AVS support included!"));*/ |
|---|
| 416 | |
|---|
| 417 | /* Handle older parts or parts that have not updated to 2nd generation AVS hardware. */ |
|---|
| 418 | BDBG_MSG(("AVS_Open: Part uses generation %d of AVS", AVS_GENERATION)); |
|---|
| 419 | BDBG_MSG(("AVS_Open: Number of oscillators: central=%d, remote=%d", MAX_CENTRAL_OSCILLATORS, MAX_REMOTE_OSCILLATORS)); |
|---|
| 420 | |
|---|
| 421 | BDBG_LEAVE(BCHP_AvsOpen); |
|---|
| 422 | return rc; |
|---|
| 423 | } |
|---|
| 424 | |
|---|
| 425 | BERR_Code BCHP_P_AvsClose ( BCHP_P_AvsHandle hHandle ) |
|---|
| 426 | { |
|---|
| 427 | BDBG_ENTER(BCHP_AvsClose); |
|---|
| 428 | BDBG_OBJECT_ASSERT(hHandle, bchp_avs_t); |
|---|
| 429 | |
|---|
| 430 | BDBG_MSG(("AVS Close called")); |
|---|
| 431 | |
|---|
| 432 | AvsSaveClosedDAC(hHandle); |
|---|
| 433 | #ifdef BCHP_PWR_RESOURCE_AVS |
|---|
| 434 | BCHP_PWR_ReleaseResource(hHandle->hChip, BCHP_PWR_RESOURCE_AVS); |
|---|
| 435 | #endif |
|---|
| 436 | BDBG_OBJECT_DESTROY(hHandle, bchp_avs_t); |
|---|
| 437 | BKNI_Free(hHandle); |
|---|
| 438 | |
|---|
| 439 | BDBG_LEAVE(BCHP_AvsClose); |
|---|
| 440 | return BERR_SUCCESS; |
|---|
| 441 | } |
|---|
| 442 | |
|---|
| 443 | /* This gets called once a second to monitor the voltage and temperatures */ |
|---|
| 444 | BERR_Code BCHP_P_AvsMonitorPvt ( BCHP_P_AvsHandle hHandle ) |
|---|
| 445 | { |
|---|
| 446 | BDBG_ENTER(BCHP_Monitor_Pvt); |
|---|
| 447 | BDBG_OBJECT_ASSERT(hHandle, bchp_avs_t); |
|---|
| 448 | |
|---|
| 449 | /*BDBG_MSG(("Entered AVS Processing routine (initialized=%s)", hHandle->initialized?"true":"false"));*/ |
|---|
| 450 | |
|---|
| 451 | /* If we have been placed in stand-by mode, we don't touch any registers */ |
|---|
| 452 | /*if (hHandle->standby) return BERR_TRACE(BERR_UNKNOWN);*/ |
|---|
| 453 | if (hHandle->standby) return BERR_UNKNOWN; |
|---|
| 454 | |
|---|
| 455 | if (!hHandle->initialized) |
|---|
| 456 | { |
|---|
| 457 | /* Prime everything until initialization completes */ |
|---|
| 458 | AvsInitialize(hHandle); |
|---|
| 459 | } |
|---|
| 460 | else |
|---|
| 461 | { |
|---|
| 462 | /* Update on every other call */ |
|---|
| 463 | AvsUpdate(hHandle); |
|---|
| 464 | } |
|---|
| 465 | |
|---|
| 466 | BDBG_LEAVE(BCHP_Monitor_Pvt); |
|---|
| 467 | return BERR_SUCCESS; |
|---|
| 468 | } |
|---|
| 469 | |
|---|
| 470 | BERR_Code BCHP_P_AvsStandbyMode( |
|---|
| 471 | BCHP_P_AvsHandle hHandle, /* [in] handle supplied from open */ |
|---|
| 472 | bool activate) /* [in] true to enter low power mode */ |
|---|
| 473 | { |
|---|
| 474 | BERR_Code rc = BERR_SUCCESS; |
|---|
| 475 | BDBG_ENTER(BCHP_P_AvsLowPowerMode); |
|---|
| 476 | BDBG_OBJECT_ASSERT(hHandle, bchp_avs_t); |
|---|
| 477 | |
|---|
| 478 | BDBG_MSG(("%s AVS standby-mode (AVS %s)", activate?"Entering":"Exiting", hHandle->initialized?"active":"inactive")); |
|---|
| 479 | |
|---|
| 480 | /* If the AVS system was never initialized then nothing to do here */ |
|---|
| 481 | if (!hHandle->initialized) return BERR_SUCCESS; |
|---|
| 482 | |
|---|
| 483 | if (activate) |
|---|
| 484 | { |
|---|
| 485 | hHandle->standby = true; /* stop register accesses BEFORE we go to low power mode */ |
|---|
| 486 | AvsSaveRegisters(hHandle); |
|---|
| 487 | #ifdef BCHP_PWR_RESOURCE_AVS |
|---|
| 488 | rc = BCHP_PWR_ReleaseResource(hHandle->hChip, BCHP_PWR_RESOURCE_AVS); |
|---|
| 489 | #endif |
|---|
| 490 | } |
|---|
| 491 | else |
|---|
| 492 | { |
|---|
| 493 | #ifdef BCHP_PWR_RESOURCE_AVS |
|---|
| 494 | rc = BCHP_PWR_AcquireResource(hHandle->hChip, BCHP_PWR_RESOURCE_AVS); |
|---|
| 495 | #endif |
|---|
| 496 | AvsRestoreRegisters(hHandle, true); |
|---|
| 497 | hHandle->standby = false; /* re-enable register accesses AFTER we return from low power mode */ |
|---|
| 498 | } |
|---|
| 499 | |
|---|
| 500 | BDBG_LEAVE(BCHP_P_AvsLowPowerMode); |
|---|
| 501 | return rc; |
|---|
| 502 | } |
|---|
| 503 | |
|---|
| 504 | /*\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\*/ |
|---|
| 505 | |
|---|
| 506 | /* Background: There are two types of oscillators: central and remote. |
|---|
| 507 | ** The central ones are a block of different kinds with different threshold values. These are packed close together in a |
|---|
| 508 | ** central area of the part. The remote ones are a scattering of oscillators spread out on the part. They are all the |
|---|
| 509 | ** same kind and the number may differ from chip to chip. The central oscillators (because they are of different types) |
|---|
| 510 | ** will have a threshold setting for each one. The remotes will all share the same set. |
|---|
| 511 | ** The object is to set some threshold values that can be used to tell if the voltage is too high or low. When the voltage |
|---|
| 512 | ** is too low the oscillators will run slower and speed will drop below the lower threshold. The voltage is raised to compensate. |
|---|
| 513 | ** When the voltage is too high the oscillators will run faster and speed will rise above upper threshold. The voltage is lowered. |
|---|
| 514 | ** Note that monitoring temperature is not required because the effects of increased or decreased temperature will be reflected |
|---|
| 515 | ** in the oscillator speeds. |
|---|
| 516 | */ |
|---|
| 517 | |
|---|
| 518 | typedef enum { Remote, Central } oscillator_t; |
|---|
| 519 | |
|---|
| 520 | /* Nice defines for debug prints */ |
|---|
| 521 | #define TorF(x) (((x)==true)?"true":"false") |
|---|
| 522 | #define CentralOrRemote(x) (((x)==Remote)?"Remote":"Central") |
|---|
| 523 | |
|---|
| 524 | /* These are a bit mask of the oscillators to exclude from the processing */ |
|---|
| 525 | /* These were identified by the hardware team to be ineffectual representation of the speed of the processor */ |
|---|
| 526 | /* These are fixed across all instances so they don't need to be a part of the allocated data */ |
|---|
| 527 | static const uint64_t default_central_exclude_mask = ~((uint64_t)1<<44 | (uint64_t)1<<45); /* we are only using oscillators 44 & 45 */ |
|---|
| 528 | static const uint64_t default_remote_exclude_mask = 0; /* we're using all the remotes */ |
|---|
| 529 | |
|---|
| 530 | /*\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\*/ |
|---|
| 531 | |
|---|
| 532 | /* Read the status of the specified central oscillator */ |
|---|
| 533 | uint32_t AvsReadCentralOscillator(BREG_Handle hRegister, unsigned oscillator) |
|---|
| 534 | { |
|---|
| 535 | uint32_t cent; |
|---|
| 536 | cent = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_CEN_ROSC_STATUS_0 + (oscillator * 4)) & BCHP_AVS_RO_REGISTERS_0_CEN_ROSC_STATUS_0_data_MASK; |
|---|
| 537 | return cent; |
|---|
| 538 | } |
|---|
| 539 | |
|---|
| 540 | /* Read the status of the specified remote oscillator */ |
|---|
| 541 | uint32_t AvsReadRemoteOscillator(BREG_Handle hRegister, unsigned oscillator) |
|---|
| 542 | { |
|---|
| 543 | uint32_t rmt; |
|---|
| 544 | rmt = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_1_RMT_ROSC_STATUS_0 + (oscillator * 4)) & BCHP_AVS_RO_REGISTERS_1_RMT_ROSC_STATUS_0_data_MASK; |
|---|
| 545 | return rmt; |
|---|
| 546 | } |
|---|
| 547 | |
|---|
| 548 | unsigned AvsGetNumberCentrals(void) { return MAX_CENTRAL_OSCILLATORS; } |
|---|
| 549 | unsigned AvsGetNumberRemotes(void) { return MAX_REMOTE_OSCILLATORS; } |
|---|
| 550 | |
|---|
| 551 | /* We have some parts that did not implement some oscillators. |
|---|
| 552 | ** These are identified by reading the status as zero. |
|---|
| 553 | ** Check all the oscillators (not already excluded) and add the ones we find. |
|---|
| 554 | ** This procedure could be done statically, but this does it dynamically. |
|---|
| 555 | */ |
|---|
| 556 | static void AvsUpdateExcludeLists(BCHP_P_AvsHandle handle) |
|---|
| 557 | { |
|---|
| 558 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 559 | uint32_t current; |
|---|
| 560 | unsigned i; |
|---|
| 561 | |
|---|
| 562 | /* Start with the defaults and update as required */ |
|---|
| 563 | handle->central_exclude_mask = default_central_exclude_mask; |
|---|
| 564 | handle->remote_exclude_mask = default_remote_exclude_mask; |
|---|
| 565 | |
|---|
| 566 | for (i=STARTING_OSCILLATOR; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 567 | { |
|---|
| 568 | if (((uint64_t)1<<i) & handle->central_exclude_mask) continue; /* skip items we're already excluding */ |
|---|
| 569 | |
|---|
| 570 | current = AvsReadCentralOscillator(hRegister, i); |
|---|
| 571 | if (!current) |
|---|
| 572 | handle->central_exclude_mask |= (uint64_t)1<<i; /* add this oscillator to the exclude list */ |
|---|
| 573 | } |
|---|
| 574 | |
|---|
| 575 | for (i=0; i<MAX_REMOTE_OSCILLATORS; i++) |
|---|
| 576 | { |
|---|
| 577 | if (((uint64_t)1<<i) & handle->remote_exclude_mask) continue; /* skip items we're already excluding */ |
|---|
| 578 | |
|---|
| 579 | current = AvsReadRemoteOscillator(hRegister, i); |
|---|
| 580 | if (!current) |
|---|
| 581 | handle->remote_exclude_mask |= (uint64_t)1<<i; /* add this oscillator to the exclude list */ |
|---|
| 582 | } |
|---|
| 583 | |
|---|
| 584 | if (handle->central_exclude_mask != default_central_exclude_mask) |
|---|
| 585 | BDBG_MSG(("Using corrected central exclude mask of: 0x%016llx", handle->central_exclude_mask)); |
|---|
| 586 | if (handle->remote_exclude_mask != default_remote_exclude_mask) |
|---|
| 587 | BDBG_MSG(("Using corrected remote exclude mask of: 0x%016llx", handle->remote_exclude_mask)); |
|---|
| 588 | } |
|---|
| 589 | |
|---|
| 590 | /* This performs some pre-initialization cleanup from stuff passed from CFE */ |
|---|
| 591 | static void AvsCleanup(BCHP_P_AvsHandle handle) |
|---|
| 592 | { |
|---|
| 593 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 594 | |
|---|
| 595 | /* A newer version of the CFE sets the MIN & MAX DAC values to prevent accidental DAC writes. */ |
|---|
| 596 | /* This is identified by a MAX value that is different from the default. */ |
|---|
| 597 | /* If the MAX is the default then this could be an old version of CFE. */ |
|---|
| 598 | if (BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MAX_DAC_CODE) == 0x3FF) |
|---|
| 599 | { |
|---|
| 600 | /* There is a CFE version out that only stores the predicted voltage in the MIN_DAC_CODE register. |
|---|
| 601 | ** Need to save this off BEFORE we step on it. |
|---|
| 602 | */ |
|---|
| 603 | handle->saved_predicted = BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MIN_DAC_CODE); |
|---|
| 604 | |
|---|
| 605 | /* A version of CFE saves values to the MIN_DAC_CODE register; don't leave these set to non-valid numbers */ |
|---|
| 606 | /* Note: you do NOT need to have the programming enable bit set in order to write these as it says in th4e RDB */ |
|---|
| 607 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MIN_DAC_CODE, 0); |
|---|
| 608 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MAX_DAC_CODE, 0x3FF); |
|---|
| 609 | |
|---|
| 610 | /* |
|---|
| 611 | ** WARNING: If you DON'T reset the registers above and attempt to either enable the PROGRAMMING_ENABLE |
|---|
| 612 | ** or write a DAC value that is lower/higher than the min/max, then the part will reset. |
|---|
| 613 | */ |
|---|
| 614 | } |
|---|
| 615 | } |
|---|
| 616 | |
|---|
| 617 | #if AVS_GENERATION==1 |
|---|
| 618 | #define PVT_MON_CNTRL 0x001D0C03 /* see PVTMon manual for description of these bits */ |
|---|
| 619 | #else |
|---|
| 620 | #define PVT_MON_CNTRL 0x007D2683 /* definitions for this register changed in the second generation parts */ |
|---|
| 621 | #endif |
|---|
| 622 | |
|---|
| 623 | static void AvsInitializeRegisters(BCHP_P_AvsHandle handle) |
|---|
| 624 | { |
|---|
| 625 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 626 | uint32_t low_32, high_16; |
|---|
| 627 | uint64_t out; |
|---|
| 628 | |
|---|
| 629 | /* Enable the DAC for writing */ |
|---|
| 630 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_PVT_MNTR_CTRL, PVT_MON_CNTRL); |
|---|
| 631 | #ifdef LEAVE_ENABLE_SET |
|---|
| 632 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 1); /* enable writing DAC */ |
|---|
| 633 | #endif |
|---|
| 634 | |
|---|
| 635 | /* Set the interrupt flag when ANY (?) oscillator is BELOW the threshold value */ |
|---|
| 636 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_DIRECTION, 0); |
|---|
| 637 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_DIRECTION, 0); |
|---|
| 638 | |
|---|
| 639 | #if 0 |
|---|
| 640 | /* Tell the sequencer to skip items we're not using */ |
|---|
| 641 | out = handle->central_exclude_mask; |
|---|
| 642 | low_32 = out & 0xFFFFFFFF; |
|---|
| 643 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_MASK_CEN_ROSC_0, low_32); |
|---|
| 644 | #if (MAX_CENTRAL_OSCILLATORS > 32) |
|---|
| 645 | high_16 = (out >> 32); |
|---|
| 646 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_MASK_CEN_ROSC_1, high_16); |
|---|
| 647 | #endif |
|---|
| 648 | #else |
|---|
| 649 | /* If we tell the sequencer to skip these items then we won't get accurate data when trying to set the |
|---|
| 650 | ** thresholds based on the current values during the new setup process. So its okay to tell the sequencer to |
|---|
| 651 | ** use all the oscillators, but we'll tell him to not use them for the threshold processing below. |
|---|
| 652 | */ |
|---|
| 653 | low_32 = high_16 = 0; |
|---|
| 654 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_MASK_CEN_ROSC_0, low_32); |
|---|
| 655 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_MASK_CEN_ROSC_1, high_16); |
|---|
| 656 | #endif |
|---|
| 657 | |
|---|
| 658 | /* And exclude the thresholds for items we're not using */ |
|---|
| 659 | out = ~handle->central_exclude_mask; /* we enable the items we're NOT masking */ |
|---|
| 660 | low_32 = out & 0xFFFFFFFF; |
|---|
| 661 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_CEN_ROSC_THRESHOLD1_EN_0, low_32); |
|---|
| 662 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_CEN_ROSC_THRESHOLD2_EN_0, low_32); |
|---|
| 663 | #if (MAX_CENTRAL_OSCILLATORS > 32) |
|---|
| 664 | high_16 = (out >> 32); |
|---|
| 665 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_CEN_ROSC_THRESHOLD1_EN_1, high_16); |
|---|
| 666 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_CEN_ROSC_THRESHOLD2_EN_1, high_16); |
|---|
| 667 | #endif |
|---|
| 668 | /*BDBG_MSG(("Central: For mask of: %016llx; Using enable mask of: %016llx (high=%04x, low=%08x)", handle->central_exclude_mask, out, high_16, low_32));*/ |
|---|
| 669 | |
|---|
| 670 | /* Tell the sequencer to skip items we're not using */ |
|---|
| 671 | out = handle->remote_exclude_mask; |
|---|
| 672 | low_32 = out & 0xFFFFFFFF; |
|---|
| 673 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_MASK_RMT_ROSC_0, low_32); |
|---|
| 674 | #if (MAX_REMOTE_OSCILLATORS > 32) |
|---|
| 675 | high_16 = (out >> 32); |
|---|
| 676 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_MASK_RMT_ROSC_1, high_16); |
|---|
| 677 | #endif |
|---|
| 678 | |
|---|
| 679 | /* And exclude the thresholds for items we're not using */ |
|---|
| 680 | out = ~handle->remote_exclude_mask; /* we enable the items we're NOT masking */ |
|---|
| 681 | low_32 = out & 0xFFFFFFFF; |
|---|
| 682 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_RMT_ROSC_THRESHOLD1_EN_0, low_32); |
|---|
| 683 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_RMT_ROSC_THRESHOLD2_EN_0, low_32); |
|---|
| 684 | #if (MAX_REMOTE_OSCILLATORS > 32) |
|---|
| 685 | high_16 = (out >> 32); |
|---|
| 686 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_RMT_ROSC_THRESHOLD1_EN_1, high_16); |
|---|
| 687 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_RMT_ROSC_THRESHOLD2_EN_1, high_16); |
|---|
| 688 | #endif |
|---|
| 689 | /*BDBG_MSG(("Remote: For mask of: %016llx; Using enable mask of: %016llx (high=%04x, low=%08x)", handle->remote_exclude_mask, out, high_16, low_32));*/ |
|---|
| 690 | } |
|---|
| 691 | |
|---|
| 692 | /* We set the voltage by controlling the DAC. A larger DAC value means a lower voltage and vice versa. */ |
|---|
| 693 | void AvsSetDAC(BCHP_P_AvsHandle handle, uint32_t dac_code) |
|---|
| 694 | { |
|---|
| 695 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 696 | |
|---|
| 697 | if (!dac_code) return; /* NEVER write 0 to DAC */ |
|---|
| 698 | /* It would be nice if we had bounds here -- i.e. never go lower than xx or higher than yy */ |
|---|
| 699 | |
|---|
| 700 | /* Found a part that was forcing us to try to change the voltage past a point where changing the DAC yielded no change in the voltage. |
|---|
| 701 | ** That is, it lower the DAC, which was supposed to raise the voltage only the voltage didn't change. |
|---|
| 702 | ** When this happened, the DAC continued to go lower on each pass until the value wrapped. |
|---|
| 703 | ** Note that we don't need a cap for the max value as writing a large DAC will generate a low voltage and cause the board to reset. |
|---|
| 704 | ** Since I don't know where that value is, there is no way to test for this. Using arbitrary value could limit the ability to set a specific low voltage. |
|---|
| 705 | ** WARNING: don't print an error message or we'll continue to print on EVERY update. |
|---|
| 706 | */ |
|---|
| 707 | if (dac_code < 10) { |
|---|
| 708 | if (!handle->outOfBounds) { |
|---|
| 709 | BDBG_ERR(("DAC went lower than 10 -- this should not happen!")); |
|---|
| 710 | handle->outOfBounds = true; |
|---|
| 711 | } |
|---|
| 712 | return; /* don't let the DAC ever go lower than this */ |
|---|
| 713 | } |
|---|
| 714 | if (dac_code > 0x3FF) { |
|---|
| 715 | if (!handle->outOfBounds) { |
|---|
| 716 | BDBG_ERR(("DAC went higher than 1024 -- this should not happen!")); |
|---|
| 717 | handle->outOfBounds = true; |
|---|
| 718 | } |
|---|
| 719 | return; /* this is the maximum value allowed by the register -- if this is too high then we're out of control */ |
|---|
| 720 | } |
|---|
| 721 | handle->outOfBounds = false; /* it is back in bounds so print again next time it goes out */ |
|---|
| 722 | |
|---|
| 723 | #ifdef LEAVE_ENABLE_SET |
|---|
| 724 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE, dac_code); |
|---|
| 725 | #else |
|---|
| 726 | #if 0 |
|---|
| 727 | /* There is a shadow copy of this register that gets loaded on the enable. |
|---|
| 728 | ** This version enables, sets, and then disables. |
|---|
| 729 | */ |
|---|
| 730 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 1); /* enable writing */ |
|---|
| 731 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE, dac_code); |
|---|
| 732 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 0); /* disable writing */ |
|---|
| 733 | #else |
|---|
| 734 | /* There is a shadow copy of this register that gets loaded on the enable. |
|---|
| 735 | ** If we enable first we could be loading something unintended. |
|---|
| 736 | */ |
|---|
| 737 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE, dac_code); |
|---|
| 738 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 1); /* enable writing */ |
|---|
| 739 | BKNI_Delay(10); /* delay just a bit before disable */ |
|---|
| 740 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 0); /* disable writing */ |
|---|
| 741 | #endif |
|---|
| 742 | #endif |
|---|
| 743 | |
|---|
| 744 | /* We're supposed to wait awhile before reading any of the values provided by the PVTMON after changing the DAC. |
|---|
| 745 | ** But that's just not something we can can do here (sleep for 60 milliseconds that is). |
|---|
| 746 | ** Instead, we just make sure that we change the DAC as the last thing before exiting the poll loop. |
|---|
| 747 | ** The poll loop gets executed once a second so the values will have settled before we get called again. |
|---|
| 748 | ** Don't do this -> BKNI_Sleep(60); |
|---|
| 749 | */ |
|---|
| 750 | |
|---|
| 751 | /*BDBG_MSG(("Set DAC value of %x", dac_code));*/ |
|---|
| 752 | handle->last_dac = dac_code; /* this is the last value we set the DAC to */ |
|---|
| 753 | } |
|---|
| 754 | |
|---|
| 755 | uint32_t AvsGetDAC(BCHP_P_AvsHandle handle) |
|---|
| 756 | { |
|---|
| 757 | uint32_t dac_code; |
|---|
| 758 | dac_code = BREG_Read32(handle->hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE); |
|---|
| 759 | /*BDBG_MSG(("Got DAC value of %x", dac_code));*/ |
|---|
| 760 | return dac_code; |
|---|
| 761 | } |
|---|
| 762 | |
|---|
| 763 | /* These are fixed definitions provided by the developers for converting oscillator frequencies */ |
|---|
| 764 | #define DIVIDER_DEFINE 1000 |
|---|
| 765 | #define COUNTER_MAX 0x7FFF |
|---|
| 766 | #define EDGE_COUNT 2 |
|---|
| 767 | |
|---|
| 768 | /* |
|---|
| 769 | ** These functions are used when writing/reading the thresholds from supplied constants. |
|---|
| 770 | ** It puts the data into a format used by the hardware or into a format that is easier to read as a frequency. |
|---|
| 771 | ** The "toRegister" is needed when we used fixed constants for the thresholds (no longer used). |
|---|
| 772 | ** The "fromRegister" is needed when dumping the data in debug mode. |
|---|
| 773 | */ |
|---|
| 774 | |
|---|
| 775 | #if 0 |
|---|
| 776 | /* We always convert the threshold values before writing the registers (turns KHz into correct format) */ |
|---|
| 777 | static uint32_t ConvertThresholdValue_toRegister(oscillator_t oscillator, unsigned long value) |
|---|
| 778 | { |
|---|
| 779 | if (oscillator == Central) |
|---|
| 780 | return value * (COUNTER_MAX * EDGE_COUNT) / (2 * 108 * DIVIDER_DEFINE); |
|---|
| 781 | else |
|---|
| 782 | return value * (COUNTER_MAX * EDGE_COUNT) / (108 * DIVIDER_DEFINE); |
|---|
| 783 | } |
|---|
| 784 | /* We always convert the threshold values after reading the registers (turns KHz into correct format) */ |
|---|
| 785 | static unsigned long ConvertThresholdValue_fromRegister(oscillator_t oscillator, uint32_t reg) |
|---|
| 786 | { |
|---|
| 787 | if (oscillator == Central) |
|---|
| 788 | return reg * (2 * 108 * DIVIDER_DEFINE) / (COUNTER_MAX * EDGE_COUNT); |
|---|
| 789 | else |
|---|
| 790 | return reg * (108 * DIVIDER_DEFINE) / (COUNTER_MAX * EDGE_COUNT); |
|---|
| 791 | } |
|---|
| 792 | #endif |
|---|
| 793 | |
|---|
| 794 | /* Return the threshold values for the specified central oscillator */ |
|---|
| 795 | void AvsReadCentralOscThresholds(BREG_Handle hRegister, unsigned oscillator, uint32_t *reg_min, uint32_t *reg_max) |
|---|
| 796 | { |
|---|
| 797 | *reg_min = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (oscillator*4)); |
|---|
| 798 | *reg_max = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (oscillator*4)); |
|---|
| 799 | } |
|---|
| 800 | |
|---|
| 801 | /* Return the threshold values for the specified remote oscillator */ |
|---|
| 802 | void AvsReadRemoteOscThresholds(BREG_Handle hRegister, unsigned oscillator, uint32_t *reg_min, uint32_t *reg_max) |
|---|
| 803 | { |
|---|
| 804 | /* The even status values are for the GS thresholds and the odd are for the GH (not documented in the RDB!) */ |
|---|
| 805 | /* This might need adjusting by the TPYE of the oscillator... */ |
|---|
| 806 | if (oscillator & 1) { |
|---|
| 807 | *reg_min = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8H); |
|---|
| 808 | *reg_max = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8H); |
|---|
| 809 | } else { |
|---|
| 810 | *reg_min = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8S); |
|---|
| 811 | *reg_max = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8S); |
|---|
| 812 | } |
|---|
| 813 | } |
|---|
| 814 | |
|---|
| 815 | /* This returns the current value from the register. This needs converting before it reflects a temperature in centigrade units (see include file). */ |
|---|
| 816 | static uint32_t AvsGetTemperature(BCHP_P_AvsHandle handle) |
|---|
| 817 | { |
|---|
| 818 | handle->last_temp = BREG_Read32(handle->hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_TEMPERATURE_MNTR_STATUS); |
|---|
| 819 | handle->last_temp &= BCHP_AVS_RO_REGISTERS_0_PVT_TEMPERATURE_MNTR_STATUS_data_MASK; |
|---|
| 820 | return handle->last_temp; |
|---|
| 821 | } |
|---|
| 822 | |
|---|
| 823 | #if 0 |
|---|
| 824 | static void printLastVoltages(BCHP_P_AvsHandle handle) |
|---|
| 825 | { |
|---|
| 826 | BDBG_MSG(("voltage_1p1_0=%d, voltage_1p1_1=%d, voltage_0p99=%d, voltage_2p75=%d, voltage_3p63=%d (DAC=%d)", |
|---|
| 827 | handle->last_voltage_1p1_0, handle->last_voltage_1p1_1, handle->last_voltage_0p99, handle->last_voltage_2p75, handle->last_voltage_3p63, |
|---|
| 828 | handle->last_dac)); |
|---|
| 829 | } |
|---|
| 830 | |
|---|
| 831 | static uint32_t GetPVTmonitorData(BREG_Handle hRegister, unsigned control) |
|---|
| 832 | { |
|---|
| 833 | uint32_t data; |
|---|
| 834 | |
|---|
| 835 | /* Select the data to read, wait for it to settle, and Read the result */ |
|---|
| 836 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_PVT_MNTR_CTRL, control); |
|---|
| 837 | data = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_PROCESS_MNTR_STATUS); |
|---|
| 838 | return (data & BCHP_AVS_RO_REGISTERS_0_PVT_PROCESS_MNTR_STATUS_data_MASK); |
|---|
| 839 | } |
|---|
| 840 | #endif |
|---|
| 841 | |
|---|
| 842 | /* This reads all of the voltage data provided by the PVT Monitor */ |
|---|
| 843 | static uint32_t AvsReadPvt(BCHP_P_AvsHandle handle) |
|---|
| 844 | { |
|---|
| 845 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 846 | #ifdef USE_AVERAGE_VOLTAGE |
|---|
| 847 | unsigned i; |
|---|
| 848 | unsigned long temp; |
|---|
| 849 | |
|---|
| 850 | /* There is a question as to whether we're getting the correct voltage value on a single read. |
|---|
| 851 | ** So instead of relying on a single read, read it a bunch of times and use an average. |
|---|
| 852 | */ |
|---|
| 853 | #define READ_VOLTAGE_THIS_MANY_TIMES 5 |
|---|
| 854 | for (i=0; i<READ_VOLTAGE_THIS_MANY_TIMES; i++) |
|---|
| 855 | temp += BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_1P10V_0_MNTR_STATUS) & BCHP_AVS_RO_REGISTERS_0_PVT_1P10V_0_MNTR_STATUS_data_MASK; |
|---|
| 856 | temp /= READ_VOLTAGE_THIS_MANY_TIMES; |
|---|
| 857 | #endif |
|---|
| 858 | |
|---|
| 859 | /*Read voltages*/ |
|---|
| 860 | handle->V_0p99 = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_0P99V_MNTR_STATUS) & BCHP_AVS_RO_REGISTERS_0_PVT_0P99V_MNTR_STATUS_data_MASK; |
|---|
| 861 | #ifdef USE_AVERAGE_VOLTAGE |
|---|
| 862 | handle->V_1p1_0 = temp; |
|---|
| 863 | #else |
|---|
| 864 | handle->V_1p1_0 = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_1P10V_0_MNTR_STATUS) & BCHP_AVS_RO_REGISTERS_0_PVT_1P10V_0_MNTR_STATUS_data_MASK; |
|---|
| 865 | #endif |
|---|
| 866 | handle->V_1p1_1 = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_1P10V_1_MNTR_STATUS) & BCHP_AVS_RO_REGISTERS_0_PVT_1P10V_1_MNTR_STATUS_data_MASK; |
|---|
| 867 | handle->V_2p75 = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_2p75V_MNTR_STATUS) & BCHP_AVS_RO_REGISTERS_0_PVT_2p75V_MNTR_STATUS_data_MASK; |
|---|
| 868 | handle->V_3p63 = BREG_Read32(hRegister, BCHP_AVS_RO_REGISTERS_0_PVT_3p63V_MNTR_STATUS) & BCHP_AVS_RO_REGISTERS_0_PVT_3p63V_MNTR_STATUS_data_MASK; |
|---|
| 869 | |
|---|
| 870 | #define bg_ref 990 /* make it 1000 bigger */ |
|---|
| 871 | |
|---|
| 872 | handle->last_voltage_0p99 = (bg_ref * handle->V_0p99 ) / 1024; |
|---|
| 873 | handle->last_voltage_1p1_0 = (bg_ref * handle->V_1p1_0 * 8) / (7*1024); |
|---|
| 874 | handle->last_voltage_1p1_1 = (bg_ref * handle->V_1p1_1 * 8) / (7*1024); |
|---|
| 875 | handle->last_voltage_2p75 = (bg_ref * handle->V_2p75 * 3) / 1024; |
|---|
| 876 | handle->last_voltage_3p63 = (bg_ref * handle->V_3p63 * 4) / 1024; |
|---|
| 877 | |
|---|
| 878 | /*printLastVoltages();*/ |
|---|
| 879 | |
|---|
| 880 | return handle->last_voltage; |
|---|
| 881 | } |
|---|
| 882 | |
|---|
| 883 | /* Reset the PVT Monitor Sequencer. |
|---|
| 884 | ** Note: there needs to be a delay before reading all the values for them to become valid. |
|---|
| 885 | ** We do that by performing the reset after completing the convergence process, before we get called back in for a second pass. |
|---|
| 886 | */ |
|---|
| 887 | static void AvsResetSequencers(BREG_Handle hRegister) |
|---|
| 888 | { |
|---|
| 889 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_INIT, 1); |
|---|
| 890 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SEQUENCER_INIT, 0); |
|---|
| 891 | } |
|---|
| 892 | |
|---|
| 893 | #if 0 |
|---|
| 894 | static void AvsClearInterruptFlags(BREG_Handle hRegister) |
|---|
| 895 | { |
|---|
| 896 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_AVS_INTERRUPT_FLAGS_CLEAR, 0xF); |
|---|
| 897 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_AVS_INTERRUPT_FLAGS_CLEAR, 0x0); |
|---|
| 898 | } |
|---|
| 899 | |
|---|
| 900 | static unsigned AvsReadInterruptFlags(BREG_Handle hRegister) |
|---|
| 901 | { |
|---|
| 902 | /*AvsClearInterruptFlags(hRegister);*/ |
|---|
| 903 | /* Do I need a delay here? */ |
|---|
| 904 | return (3 & BREG_Read32(hRegister, BCHP_AVS_HW_MNTR_AVS_INTERRUPT_FLAGS)); |
|---|
| 905 | } |
|---|
| 906 | #endif |
|---|
| 907 | |
|---|
| 908 | /* Adjust the DAC (and therefore the voltage) by the specified step value */ |
|---|
| 909 | static bool AvsAdjustDacCode(BCHP_P_AvsHandle handle, int adjustment_step) |
|---|
| 910 | { |
|---|
| 911 | uint32_t cur_val, new_val; |
|---|
| 912 | uint32_t voltage_1p1_0; |
|---|
| 913 | bool result = false; |
|---|
| 914 | |
|---|
| 915 | new_val = cur_val = AvsGetDAC(handle); |
|---|
| 916 | |
|---|
| 917 | /* |
|---|
| 918 | ** We created a locking system to allow others to muck with registers without telling us. |
|---|
| 919 | ** Before they do anyting they are supposed to create the lock. |
|---|
| 920 | ** When the lock is enabled we won't fo anything to prevent them from doing what they want. |
|---|
| 921 | */ |
|---|
| 922 | |
|---|
| 923 | /* If lock is not enabled then okay to fix the DAC value */ |
|---|
| 924 | if (!handle->lock_enabled) |
|---|
| 925 | { |
|---|
| 926 | /* HACK: Seeing this value come back incorrect sometimes (???) */ |
|---|
| 927 | /* If we see this then something is wrong... (and we'll use the last [saved] value instead of the one we just read) */ |
|---|
| 928 | if (handle->last_dac && handle->last_dac != cur_val) { |
|---|
| 929 | BDBG_ERR(("DAC current value (%d) not same as last (%d)", cur_val, handle->last_dac)); |
|---|
| 930 | cur_val = handle->last_dac; |
|---|
| 931 | } |
|---|
| 932 | } |
|---|
| 933 | |
|---|
| 934 | /* These define the MIN and MAX values we'll let the voltage go to */ |
|---|
| 935 | #define VMIN_ABS 860 /*0.86V*/ |
|---|
| 936 | #define VMAX_ABS 1000 /*1.00V*/ |
|---|
| 937 | |
|---|
| 938 | voltage_1p1_0 = AvsReadPvt(handle); |
|---|
| 939 | /*BDBG_MSG(("Voltage = %d (min=%d, max=%d)", voltage_1p1_0, VMIN_ABS, VMAX_ABS));*/ |
|---|
| 940 | /*BDBG_MSG(("DAC: current value (%d) last value (%d)", cur_val, handle->last_dac));*/ |
|---|
| 941 | |
|---|
| 942 | /* Make sure we never violate the voltage max and min values */ |
|---|
| 943 | /* Note that the adjustment step can be negative to adjust the other way */ |
|---|
| 944 | if ((VMIN_ABS <= voltage_1p1_0) && (voltage_1p1_0 <= VMAX_ABS)) |
|---|
| 945 | { |
|---|
| 946 | new_val = cur_val + adjustment_step; |
|---|
| 947 | /*BDBG_MSG(("Setting new DAC value = %d (was %d, step=%d)", new_val, cur_val, adjustment_step));*/ |
|---|
| 948 | result = true; |
|---|
| 949 | } |
|---|
| 950 | else |
|---|
| 951 | { |
|---|
| 952 | /* new algorithm says we shouldn't ALLOW the voltage to exceed its limits */ |
|---|
| 953 | /* So we know we're outside the safe voltage range -- bring it back */ |
|---|
| 954 | if (voltage_1p1_0 > VMAX_ABS) |
|---|
| 955 | new_val = cur_val + AvsAbs(adjustment_step); /* increase DAC to lower voltage */ |
|---|
| 956 | else |
|---|
| 957 | new_val = cur_val - AvsAbs(adjustment_step); /* decrease DAC to increase voltage */ |
|---|
| 958 | |
|---|
| 959 | BDBG_MSG(("Voltage exceeding limit -- correcting (voltage=%d)", voltage_1p1_0)); |
|---|
| 960 | /*BDBG_MSG(("Setting new DAC value = %d (was %d, step=%d)", new_val, cur_val, adjustment_step));*/ |
|---|
| 961 | result = true; |
|---|
| 962 | } |
|---|
| 963 | |
|---|
| 964 | if (new_val == 512) new_val += 1; /* apparently using 512 is bad */ |
|---|
| 965 | if (new_val == cur_val) return result; /* optimization -- don't write register with same value */ |
|---|
| 966 | |
|---|
| 967 | AvsSetDAC(handle, new_val); |
|---|
| 968 | return result; |
|---|
| 969 | } |
|---|
| 970 | |
|---|
| 971 | #if 0 |
|---|
| 972 | static void get_oscillator_values(BREG_Handle hRegister, oscillator_t oscillator, unsigned which_one, uint32_t *current, uint32_t *lower, uint32_t *upper) |
|---|
| 973 | { |
|---|
| 974 | if (oscillator == Remote) |
|---|
| 975 | { |
|---|
| 976 | *current = AvsReadRemoteOscillator(hRegister, which_one); |
|---|
| 977 | AvsReadRemoteOscThresholds(hRegister, which_one, lower, upper); |
|---|
| 978 | } |
|---|
| 979 | else |
|---|
| 980 | { |
|---|
| 981 | *current = AvsReadCentralOscillator(hRegister, which_one); |
|---|
| 982 | AvsReadCentralOscThresholds(hRegister, which_one, lower, upper); |
|---|
| 983 | } |
|---|
| 984 | } |
|---|
| 985 | |
|---|
| 986 | static void print_oscillator(char *what_kind, oscillator_t oscillator, unsigned which_one, uint32_t current, uint32_t lower, uint32_t upper) |
|---|
| 987 | { |
|---|
| 988 | #if 1 |
|---|
| 989 | signed f_current = ConvertThresholdValue_fromRegister(oscillator, current); |
|---|
| 990 | signed f_lower = ConvertThresholdValue_fromRegister(oscillator, lower); |
|---|
| 991 | signed f_upper = ConvertThresholdValue_fromRegister(oscillator, upper); |
|---|
| 992 | BDBG_MSG(("%s %2d %08x %08x %08x (%c %c) c=%c%2d.%03d l=%c%2d.%03d u=%c%2d.%03d (ld=%c%2d.%03d, ud=%c%2d.%03d)", |
|---|
| 993 | what_kind, which_one, current, lower, upper, (current<=lower)?'L':'H', (current<=upper)?'L':'H', |
|---|
| 994 | sign(f_current), mantissa(f_current), fraction(f_current), |
|---|
| 995 | sign(f_lower), mantissa(f_lower), fraction(f_lower), |
|---|
| 996 | sign(f_upper), mantissa(f_upper), fraction(f_upper), |
|---|
| 997 | sign(f_current-f_lower), mantissa(f_current-f_lower), fraction(f_current-f_lower), |
|---|
| 998 | sign(f_current-f_upper), mantissa(f_current - f_upper), fraction(f_current - f_upper))); |
|---|
| 999 | #else |
|---|
| 1000 | BDBG_MSG(("%s %2d %08x %08x %08x (%c %c)", what_kind, which_one, current, lower, upper, (current<=lower)?'L':'H', (current<=upper)?'L':'H')); |
|---|
| 1001 | #endif |
|---|
| 1002 | } |
|---|
| 1003 | |
|---|
| 1004 | static void get_and_print_oscillator(BCHP_P_AvsHandle handle, oscillator_t oscillator, unsigned which_one) |
|---|
| 1005 | { |
|---|
| 1006 | uint32_t current; |
|---|
| 1007 | uint32_t lower, upper; |
|---|
| 1008 | |
|---|
| 1009 | get_oscillator_values(handle->hRegister, oscillator, which_one, ¤t, &lower, &upper); |
|---|
| 1010 | print_oscillator(oscillator==Remote?"R:":"C:", oscillator, which_one, current, lower, upper); |
|---|
| 1011 | } |
|---|
| 1012 | |
|---|
| 1013 | static void printOscillators(BCHP_P_AvsHandle handle, char *text, bool include_excludes) |
|---|
| 1014 | { |
|---|
| 1015 | unsigned i; |
|---|
| 1016 | |
|---|
| 1017 | if (text) BDBG_MSG(("%s", text)); |
|---|
| 1018 | |
|---|
| 1019 | /* The number of central oscillators is set by the defaults or configuration file */ |
|---|
| 1020 | for (i=STARTING_OSCILLATOR; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1021 | { |
|---|
| 1022 | if (!include_excludes && (((uint64_t)1<<i) & handle->central_exclude_mask)) continue; /* skip items we're excluding */ |
|---|
| 1023 | get_and_print_oscillator(handle, Central, i); |
|---|
| 1024 | } |
|---|
| 1025 | |
|---|
| 1026 | /* The number of remote oscillators is fixed based on the part type (we dynamically set based on part) */ |
|---|
| 1027 | for (i=0; i<MAX_REMOTE_OSCILLATORS; i++) |
|---|
| 1028 | { |
|---|
| 1029 | if (!include_excludes && (((uint64_t)1<<i) & handle->remote_exclude_mask)) continue; /* skip items we're excluding */ |
|---|
| 1030 | get_and_print_oscillator(handle, Remote, i); |
|---|
| 1031 | } |
|---|
| 1032 | } |
|---|
| 1033 | #endif |
|---|
| 1034 | |
|---|
| 1035 | static void AvsSetNewThresholds_0(BCHP_P_AvsHandle handle) |
|---|
| 1036 | { |
|---|
| 1037 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1038 | unsigned current_dac, closed_dac=0, saved_dac=0, thresholds=0, predicted; |
|---|
| 1039 | |
|---|
| 1040 | current_dac = AvsGetDAC(handle); |
|---|
| 1041 | |
|---|
| 1042 | #if 1 |
|---|
| 1043 | /* We reserve a threshold value for saving the DAC value set by us when we closed */ |
|---|
| 1044 | closed_dac = BREG_Read32(hRegister, CLOSED_DAC); |
|---|
| 1045 | if (closed_dac) |
|---|
| 1046 | { |
|---|
| 1047 | /* use the original DAC value that CFE chose that we saved on the first run */ |
|---|
| 1048 | AvsSetDAC(handle, closed_dac); |
|---|
| 1049 | BDBG_MSG(("Using saved DAC value of %d (0x%x) from close for starting DAC value", closed_dac, closed_dac)); |
|---|
| 1050 | /* Don't use it again unless we close properly again */ |
|---|
| 1051 | BREG_Write32(hRegister, CLOSED_DAC, 0); |
|---|
| 1052 | } |
|---|
| 1053 | #endif |
|---|
| 1054 | |
|---|
| 1055 | #if 1 |
|---|
| 1056 | /* We reserve a threshold value for saving the original DAC value set by CFE */ |
|---|
| 1057 | if (!closed_dac) |
|---|
| 1058 | { |
|---|
| 1059 | saved_dac = BREG_Read32(hRegister, SAVED_DAC); |
|---|
| 1060 | if (saved_dac) |
|---|
| 1061 | { |
|---|
| 1062 | /* use the original DAC value that CFE chose that we saved on the first run */ |
|---|
| 1063 | AvsSetDAC(handle, saved_dac); |
|---|
| 1064 | BDBG_MSG(("Using saved DAC value of %d (0x%x) for starting DAC value", saved_dac, saved_dac)); |
|---|
| 1065 | } |
|---|
| 1066 | else |
|---|
| 1067 | { |
|---|
| 1068 | /* else this is our first run. Save the CFE DAC value for future runs. */ |
|---|
| 1069 | BREG_Write32(hRegister, SAVED_DAC, current_dac); |
|---|
| 1070 | BDBG_MSG(("Using CFE DAC value of %d (0x%x) for starting DAC value (saving)", current_dac, current_dac)); |
|---|
| 1071 | } |
|---|
| 1072 | } |
|---|
| 1073 | #endif |
|---|
| 1074 | |
|---|
| 1075 | /* CFE stored the predicted voltage value (before applying margins, etc.) */ |
|---|
| 1076 | /* If this one is set, ignore the one in the DAC_MIN register */ |
|---|
| 1077 | predicted = BREG_Read32(hRegister, PREDICTED_VOLTAGE); |
|---|
| 1078 | |
|---|
| 1079 | /* If it isn't in the one above then look in the secondary location */ |
|---|
| 1080 | if (!predicted) { |
|---|
| 1081 | predicted = handle->saved_predicted; |
|---|
| 1082 | BREG_Write32(hRegister, PREDICTED_VOLTAGE, predicted); |
|---|
| 1083 | BDBG_MSG(("Saving predicted voltage (%d) to save location", predicted)); |
|---|
| 1084 | } |
|---|
| 1085 | |
|---|
| 1086 | /* Either way, predicted is now the right one. Dump and save a copy! */ |
|---|
| 1087 | BDBG_MSG(("Predicted voltage (from CFE) = %d (%x)", predicted, predicted)); |
|---|
| 1088 | handle->saved_predicted = predicted; |
|---|
| 1089 | |
|---|
| 1090 | /* A FF part is identified as having a predicted voltage lower the 0.730V */ |
|---|
| 1091 | #define FF_PART 730 |
|---|
| 1092 | |
|---|
| 1093 | /* We never want the voltage to go above a specific value for FF parts. |
|---|
| 1094 | ** Since CFE always uses the minimum voltage for a FF part this means we never need to change it. |
|---|
| 1095 | ** We can just not do ANY AVS processing for these parts (or use alternate method). |
|---|
| 1096 | ** If predicted is zero then this CFE never saved the predicted voltage value -- this is wrong CFE! |
|---|
| 1097 | */ |
|---|
| 1098 | handle->ff_part = false; |
|---|
| 1099 | if (predicted && predicted < FF_PART) |
|---|
| 1100 | { |
|---|
| 1101 | BDBG_MSG(("FF part identified -- using alternate AVS processing (predicted=%d)!", predicted)); |
|---|
| 1102 | handle->ff_part = true; |
|---|
| 1103 | } |
|---|
| 1104 | |
|---|
| 1105 | #if 1 |
|---|
| 1106 | /* Code to set threshold registers was copied to CFE in order to set the thresholds based on the status with |
|---|
| 1107 | ** the voltage set by CFE. There is older code that doesn't do this so we have to "know" if CFE did this or not. |
|---|
| 1108 | ** CFE writes a magic flag in the following register if it did this operation. |
|---|
| 1109 | */ |
|---|
| 1110 | handle->thresholdsSet = false; |
|---|
| 1111 | thresholds = BREG_Read32(hRegister, THRESHOLDS_SET); |
|---|
| 1112 | if (thresholds == AVS_CFE_MAGIC) |
|---|
| 1113 | { |
|---|
| 1114 | BDBG_MSG(("Theshold values were set by CFE and will not be re-set here!")); |
|---|
| 1115 | handle->thresholdsSet = true; |
|---|
| 1116 | } |
|---|
| 1117 | if (thresholds == AVS_AVS_MAGIC) |
|---|
| 1118 | { |
|---|
| 1119 | BDBG_MSG(("Theshold values were set by this PI and will not be re-set here!")); |
|---|
| 1120 | handle->thresholdsSet = true; |
|---|
| 1121 | } |
|---|
| 1122 | #endif |
|---|
| 1123 | } |
|---|
| 1124 | |
|---|
| 1125 | /* Save the current DAC value on a clean shutdown to restore on restart */ |
|---|
| 1126 | static void AvsSaveClosedDAC(BCHP_P_AvsHandle handle) |
|---|
| 1127 | { |
|---|
| 1128 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1129 | unsigned current_dac; |
|---|
| 1130 | |
|---|
| 1131 | current_dac = AvsGetDAC(handle); |
|---|
| 1132 | |
|---|
| 1133 | BREG_Write32(hRegister, CLOSED_DAC, current_dac); |
|---|
| 1134 | BDBG_MSG(("Using current DAC value of %d (0x%x) for next starting DAC value (saving)", current_dac, current_dac)); |
|---|
| 1135 | } |
|---|
| 1136 | |
|---|
| 1137 | /* |
|---|
| 1138 | ** New Threshold Procedure (7/15/11): |
|---|
| 1139 | ** We're assuming that CFE has already started and has completed the open-loop processing resulting in a voltage value. |
|---|
| 1140 | ** This procedure uses that voltage value as a starting point for calculating new threshold values before beginning the convergence process. |
|---|
| 1141 | ** |
|---|
| 1142 | ** 1. For oscillators 44 and 45 of the central group (IROSCX2 oscillators) and the remote oscillators, find slowest oscillator for each vt |
|---|
| 1143 | ** type and store its register value and its number. |
|---|
| 1144 | ** 2. Because the register values of remotes and central of the same IROSCX2 oscillator cell differ by a factor of 2 (extra divider on the |
|---|
| 1145 | ** central oscillators), the min register value found in step 1 above is loaded into the corresponding threshold_1 registers depending |
|---|
| 1146 | ** on whether the corresponding oscillator is in the central or the remote group. |
|---|
| 1147 | ** 3. Read the status registers of all the remaining central oscillators and store them as the lower threshold, on oscillator by oscillator basis. |
|---|
| 1148 | ** 4. Read the current dac code and decrement it by 16 codes. This should result between 7 and 14mV, or an average of ~10mV. |
|---|
| 1149 | ** The number 16 may still need to be refined based on actual test results. |
|---|
| 1150 | ** 5. Similar to step #1, for oscillators 44 and 45 and the remotes, find the slowest oscillator for each vt type and store its register value and its number. |
|---|
| 1151 | ** 6. Similar to step #2, load the register value in step 5 into the upper threshold (threshold_2), taking into account the factor of 2 mentioned above. |
|---|
| 1152 | ** 7. Read the status registers of all the remaining central oscillators and store them as the upper threshold, on oscillator by oscillator basis. |
|---|
| 1153 | ** |
|---|
| 1154 | ** Then, Run the standard convergence code that you should already have. |
|---|
| 1155 | ** |
|---|
| 1156 | ** The threshold procedure had to be broken into two steps because of the delay needed to get accurate readings for the voltages and oscillators. |
|---|
| 1157 | ** When we set a new voltage, by writing the DAC, there is a delay needed to allow the sequencer time to process all the new data (make another pass). |
|---|
| 1158 | ** This can be forced by resetting the sequencer (AvsResetSequencers) but this also requires a delay to allow the sequencer to process all the items. |
|---|
| 1159 | ** By splitting this process into two steps we'll process the first part in one call-back, and set the new voltage, and then process the rest in |
|---|
| 1160 | ** the second call-back (after a delay). |
|---|
| 1161 | */ |
|---|
| 1162 | static void AvsSetNewThresholds_1(BCHP_P_AvsHandle handle) |
|---|
| 1163 | { |
|---|
| 1164 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1165 | unsigned i, current_dac, lowest_hvt, lowest_svt, temp; |
|---|
| 1166 | oscillator_t which_h_type, which_s_type; unsigned which_h, which_s; |
|---|
| 1167 | bool remotes; |
|---|
| 1168 | |
|---|
| 1169 | /* 0) Use the current DAC value to choose the lower threshold value */ |
|---|
| 1170 | current_dac = AvsGetDAC(handle); |
|---|
| 1171 | |
|---|
| 1172 | /* 1) Find the lowest threshold for both the central and remote oscillators */ |
|---|
| 1173 | lowest_hvt = AvsReadCentralOscillator(hRegister, 44); |
|---|
| 1174 | lowest_svt = AvsReadCentralOscillator(hRegister, 45); |
|---|
| 1175 | which_s_type = which_h_type = Central; which_h = 44; which_s = 45; |
|---|
| 1176 | remotes = false; |
|---|
| 1177 | |
|---|
| 1178 | lowest_hvt *= 2; /* normalizing the central to the remotes because central are divided by 2 relative to remotes */ |
|---|
| 1179 | lowest_svt *= 2; |
|---|
| 1180 | |
|---|
| 1181 | for (i=0; i<MAX_REMOTE_OSCILLATORS; i++) |
|---|
| 1182 | { |
|---|
| 1183 | if (((uint64_t)1<<i) & handle->remote_exclude_mask) continue; /* skip items we're excluding */ |
|---|
| 1184 | if (i&1) { |
|---|
| 1185 | if ((temp = AvsReadRemoteOscillator(hRegister, i)) < lowest_hvt) { lowest_hvt = temp; remotes = true; which_h_type = Remote; which_h = i; } |
|---|
| 1186 | } else { |
|---|
| 1187 | if ((temp = AvsReadRemoteOscillator(hRegister, i)) < lowest_svt) { lowest_svt = temp; remotes = true; which_s_type = Remote; which_s = i; } |
|---|
| 1188 | } |
|---|
| 1189 | } |
|---|
| 1190 | |
|---|
| 1191 | { |
|---|
| 1192 | temp = AvsReadPvt(handle); |
|---|
| 1193 | BDBG_MSG(("Lower: For DAC = %d (0x%x) and voltage = %d (0x%x)", current_dac, current_dac, temp, temp)); |
|---|
| 1194 | BDBG_MSG(("Lowest HVT = %s:%d = %d (0x%x)", CentralOrRemote(which_h_type), which_h, lowest_hvt, lowest_hvt)); |
|---|
| 1195 | BDBG_MSG(("Lowest SVT = %s:%d = %d (0x%x)", CentralOrRemote(which_s_type), which_s, lowest_svt, lowest_svt)); |
|---|
| 1196 | } |
|---|
| 1197 | |
|---|
| 1198 | /* 2) Set the lower threshold with the smallest value found above. */ |
|---|
| 1199 | BREG_Write32(hRegister, (BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (44*4)), lowest_hvt/2); |
|---|
| 1200 | BREG_Write32(hRegister, (BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (45*4)), lowest_svt/2); |
|---|
| 1201 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8H, lowest_hvt); |
|---|
| 1202 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8S, lowest_svt); |
|---|
| 1203 | |
|---|
| 1204 | #if 0 /* if we're not using these then don't write anything there */ |
|---|
| 1205 | /* 3) Write the current status values to the lower threshold register */ |
|---|
| 1206 | for (i=STARTING_OSCILLATOR; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1207 | { |
|---|
| 1208 | if (i==44 || i==45) continue; /* already did these above */ |
|---|
| 1209 | BREG_Write32(hRegister, (BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (i*4)), AvsReadCentralOscillator(hRegister, i)); |
|---|
| 1210 | } |
|---|
| 1211 | #endif |
|---|
| 1212 | |
|---|
| 1213 | /* 4) Now, lower the DAC (raise the voltage) to choose the upper threshold value */ |
|---|
| 1214 | #define DAC_OFFSET 16 |
|---|
| 1215 | current_dac -= DAC_OFFSET; |
|---|
| 1216 | AvsSetDAC(handle, current_dac); |
|---|
| 1217 | } |
|---|
| 1218 | |
|---|
| 1219 | static void AvsSetNewThresholds_2(BCHP_P_AvsHandle handle) |
|---|
| 1220 | { |
|---|
| 1221 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1222 | unsigned i, current_dac, lowest_hvt, lowest_svt, temp; |
|---|
| 1223 | oscillator_t which_h_type, which_s_type; unsigned which_h, which_s; |
|---|
| 1224 | bool remotes; |
|---|
| 1225 | |
|---|
| 1226 | current_dac = AvsGetDAC(handle); |
|---|
| 1227 | |
|---|
| 1228 | /* 5) Find the lowest threshold for both the central and remote oscillators at the new voltage */ |
|---|
| 1229 | lowest_hvt = AvsReadCentralOscillator(hRegister, 44); |
|---|
| 1230 | lowest_svt = AvsReadCentralOscillator(hRegister, 45); |
|---|
| 1231 | which_s_type = which_h_type = Central; which_h = 44; which_s = 45; |
|---|
| 1232 | remotes = false; |
|---|
| 1233 | |
|---|
| 1234 | lowest_hvt *= 2; /* normalizing the central to the remotes because central are divided by 2 relative to remotes */ |
|---|
| 1235 | lowest_svt *= 2; |
|---|
| 1236 | |
|---|
| 1237 | for (i=0; i<MAX_REMOTE_OSCILLATORS; i++) |
|---|
| 1238 | { |
|---|
| 1239 | if (((uint64_t)1<<i) & handle->remote_exclude_mask) continue; /* skip items we're excluding */ |
|---|
| 1240 | if (i&1) { |
|---|
| 1241 | if ((temp = AvsReadRemoteOscillator(hRegister, i)) < lowest_hvt) { lowest_hvt = temp; remotes = true; which_h_type = Remote; which_h = i; } |
|---|
| 1242 | } else { |
|---|
| 1243 | if ((temp = AvsReadRemoteOscillator(hRegister, i)) < lowest_svt) { lowest_svt = temp; remotes = true; which_s_type = Remote; which_s = i; } |
|---|
| 1244 | } |
|---|
| 1245 | } |
|---|
| 1246 | |
|---|
| 1247 | { |
|---|
| 1248 | temp = AvsReadPvt(handle); |
|---|
| 1249 | BDBG_MSG(("Upper: For DAC = %d (0x%x) and voltage = %d (0x%x)", current_dac, current_dac, temp, temp)); |
|---|
| 1250 | BDBG_MSG(("Lowest HVT = %s:%d = %d (0x%x)", CentralOrRemote(which_h_type), which_h, lowest_hvt, lowest_hvt)); |
|---|
| 1251 | BDBG_MSG(("Lowest SVT = %s:%d = %d (0x%x)", CentralOrRemote(which_s_type), which_s, lowest_svt, lowest_svt)); |
|---|
| 1252 | } |
|---|
| 1253 | |
|---|
| 1254 | /* 6) Set the upper threshold with the smallest value found above. */ |
|---|
| 1255 | BREG_Write32(hRegister, (BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (44*4)), lowest_hvt/2); |
|---|
| 1256 | BREG_Write32(hRegister, (BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (45*4)), lowest_svt/2); |
|---|
| 1257 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8H, lowest_hvt); |
|---|
| 1258 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8S, lowest_svt); |
|---|
| 1259 | |
|---|
| 1260 | #if 0 /* if we're not using these then don't write anything there */ |
|---|
| 1261 | /* 7) Write the current status values to the upper threshold register */ |
|---|
| 1262 | for (i=STARTING_OSCILLATOR; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1263 | { |
|---|
| 1264 | if (i==44 || i==45) continue; /* already did these above */ |
|---|
| 1265 | BREG_Write32(hRegister, (BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (i*4)), AvsReadCentralOscillator(hRegister, i)); |
|---|
| 1266 | } |
|---|
| 1267 | #endif |
|---|
| 1268 | |
|---|
| 1269 | #if 1 |
|---|
| 1270 | /* The thresholds have now been set so we don't need to re-do this on restart */ |
|---|
| 1271 | BREG_Write32(hRegister, THRESHOLDS_SET, AVS_AVS_MAGIC); |
|---|
| 1272 | #endif |
|---|
| 1273 | } |
|---|
| 1274 | |
|---|
| 1275 | /* This is a special version for the FF parts. |
|---|
| 1276 | ** This is meant to maintain the voltage at specific value regardless of the temperature. |
|---|
| 1277 | ** For FF parts, this is run in place of the convergence algorithm. |
|---|
| 1278 | */ |
|---|
| 1279 | static void AvsConstantVoltageProcess(BCHP_P_AvsHandle handle) |
|---|
| 1280 | { |
|---|
| 1281 | uint32_t dac, saved, voltage; |
|---|
| 1282 | |
|---|
| 1283 | voltage = AvsReadPvt(handle); |
|---|
| 1284 | saved = dac = AvsGetDAC(handle); |
|---|
| 1285 | |
|---|
| 1286 | #define FF_Voltage_Norm 860 /* 0.860V */ |
|---|
| 1287 | #define ConstantMargin 4 /* millivolts */ |
|---|
| 1288 | #define DACchange 1 /* amount to change DAC on each pass */ |
|---|
| 1289 | |
|---|
| 1290 | if (voltage < (FF_Voltage_Norm - ConstantMargin)) dac -= DACchange; /* raise the voltage by lowering the DAC */ |
|---|
| 1291 | if (voltage > (FF_Voltage_Norm + ConstantMargin)) dac += DACchange; /* lower the voltage by raising the DAC */ |
|---|
| 1292 | |
|---|
| 1293 | /* Only make changes when the value has changed */ |
|---|
| 1294 | if (dac != saved) AvsSetDAC(handle, dac); |
|---|
| 1295 | } |
|---|
| 1296 | |
|---|
| 1297 | /* This is the convergence algorithm. |
|---|
| 1298 | ** It checks the value of each oscillator against the threshold values. |
|---|
| 1299 | ** It moves the voltage by a fixed amount (on each call) until at least one of the oscillartors is inside the threshold boundaries. |
|---|
| 1300 | ** We can be unconverged by being outside the threshold ranges on all oscillators or by one or more oscillators being below the lower threshold. |
|---|
| 1301 | ** If all oscillators are above the upper threshold we lower the voltage (by raising the DAC). |
|---|
| 1302 | ** If even one oscillator is below the lower threshold we raise the voltage (by lowering the DAC). |
|---|
| 1303 | ** Return false if we failed to change the DAC due to voltage threshold violations (min/max). |
|---|
| 1304 | */ |
|---|
| 1305 | static bool AvsConvergeProcess(BCHP_P_AvsHandle handle) |
|---|
| 1306 | { |
|---|
| 1307 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1308 | uint32_t current, lower=0, upper=0; |
|---|
| 1309 | bool increase=false, found_one=false, failed=false; |
|---|
| 1310 | unsigned i; |
|---|
| 1311 | |
|---|
| 1312 | for (i=STARTING_OSCILLATOR; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1313 | { |
|---|
| 1314 | if (((uint64_t)1<<i) & handle->central_exclude_mask) continue; /* skip items we're excluding */ |
|---|
| 1315 | |
|---|
| 1316 | current = AvsReadCentralOscillator(hRegister, i); |
|---|
| 1317 | AvsReadCentralOscThresholds(hRegister, i, &lower, &upper); |
|---|
| 1318 | |
|---|
| 1319 | /*print_oscillator("CENTRAL:", Central, i, current, lower, upper);*/ |
|---|
| 1320 | |
|---|
| 1321 | if (current < lower) { |
|---|
| 1322 | increase = true; |
|---|
| 1323 | } else if (current < upper) { |
|---|
| 1324 | found_one = true; |
|---|
| 1325 | } |
|---|
| 1326 | } |
|---|
| 1327 | |
|---|
| 1328 | for (i=0; i<MAX_REMOTE_OSCILLATORS; i++) |
|---|
| 1329 | { |
|---|
| 1330 | if (((uint64_t)1<<i) & handle->remote_exclude_mask) continue; /* skip items we're excluding */ |
|---|
| 1331 | |
|---|
| 1332 | current = AvsReadRemoteOscillator(hRegister, i); |
|---|
| 1333 | AvsReadRemoteOscThresholds(hRegister, i, &lower, &upper); |
|---|
| 1334 | |
|---|
| 1335 | /*print_oscillator("REMOTE: ", Remote, i, current, lower, upper);*/ |
|---|
| 1336 | |
|---|
| 1337 | if (current < lower) { |
|---|
| 1338 | increase = true; |
|---|
| 1339 | } else if (current < upper) { |
|---|
| 1340 | found_one = true; |
|---|
| 1341 | } |
|---|
| 1342 | } |
|---|
| 1343 | |
|---|
| 1344 | /* |
|---|
| 1345 | ** Note: this algorithm ensures that if we're below the lower threshold that we increase the voltage. |
|---|
| 1346 | ** If we don't find any oscillator below the upper threshold then we decrease the voltage. |
|---|
| 1347 | ** There is a swing to the values read so that sometimes we'll read a value under the lower threshold. |
|---|
| 1348 | ** We'll compensate for this by raising the voltage another step. The swing should never be less than |
|---|
| 1349 | ** the threshold range or we'll end up vasilating between the two thresholds. |
|---|
| 1350 | ** You might think that its a good idea to increase the voltage by a larger amount then when lowering. |
|---|
| 1351 | ** This will bring us above the lower threshold quicker, but might allow us to increase past the upper |
|---|
| 1352 | ** threshold causing a vasilating situation. Don't do this! |
|---|
| 1353 | */ |
|---|
| 1354 | |
|---|
| 1355 | if (increase) |
|---|
| 1356 | { |
|---|
| 1357 | /*BDBG_MSG(("** DAC High (voltage too low) **"));*/ |
|---|
| 1358 | |
|---|
| 1359 | /* we raise the voltage by lowering the DAC */ |
|---|
| 1360 | failed = AvsAdjustDacCode(handle, -(handle->dac_step_size*2)); |
|---|
| 1361 | } |
|---|
| 1362 | else if (!found_one) |
|---|
| 1363 | { |
|---|
| 1364 | /*BDBG_MSG(("** DAC low (voltage too high) **"));*/ |
|---|
| 1365 | |
|---|
| 1366 | /* we lower the voltage by raising the DAC */ |
|---|
| 1367 | failed = AvsAdjustDacCode(handle, handle->dac_step_size); |
|---|
| 1368 | } |
|---|
| 1369 | |
|---|
| 1370 | /*if (!handle->doOnce) printOscillators(handle, "Converged:", true);*/ |
|---|
| 1371 | handle->doOnce = true; |
|---|
| 1372 | return failed; |
|---|
| 1373 | } |
|---|
| 1374 | |
|---|
| 1375 | /*\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\*/ |
|---|
| 1376 | |
|---|
| 1377 | static void AvsInitComplete(BCHP_P_AvsHandle handle) |
|---|
| 1378 | { |
|---|
| 1379 | BDBG_MSG(("AVS initialized and processing started (AVS enabled)!")); |
|---|
| 1380 | handle->initialized = true; |
|---|
| 1381 | } |
|---|
| 1382 | |
|---|
| 1383 | static void AvsInitialize(BCHP_P_AvsHandle handle) |
|---|
| 1384 | { |
|---|
| 1385 | uint32_t current_dac; |
|---|
| 1386 | |
|---|
| 1387 | /* This checks to make sure that CFE did what it was supposed to do (set the voltage as part of the open-loop process). |
|---|
| 1388 | ** If this wasn't done than we can't do anything more here -- trying to would be bad. |
|---|
| 1389 | ** The reason is that changing the voltage by too much here would change the rate at which we access memory. |
|---|
| 1390 | ** This has been tuned (shmoo) to provide the optimim access speed. We could move outside the memory optimization window |
|---|
| 1391 | ** and cause memory access issues if we were to change the voltage too much. |
|---|
| 1392 | */ |
|---|
| 1393 | current_dac = AvsGetDAC(handle); |
|---|
| 1394 | |
|---|
| 1395 | if (!current_dac) { |
|---|
| 1396 | if (!handle->doOnce) { |
|---|
| 1397 | BDBG_WRN(("Booted with CFE that doesn't include AVS support --- disabling AVS!")); |
|---|
| 1398 | handle->doOnce = true; |
|---|
| 1399 | } |
|---|
| 1400 | return; |
|---|
| 1401 | } |
|---|
| 1402 | |
|---|
| 1403 | /* Always print something so we know that AVS is enabled in this build! */ |
|---|
| 1404 | /* This is here (instead of in the Open) so that we know that support is included in the application (and that its being called) */ |
|---|
| 1405 | if (!handle->doOnce) { |
|---|
| 1406 | BDBG_WRN(("AVS support enabled!")); |
|---|
| 1407 | handle->doOnce = true; |
|---|
| 1408 | } |
|---|
| 1409 | |
|---|
| 1410 | handle->original_dac = current_dac; /* this was the value when we first started (set from CFE?) */ |
|---|
| 1411 | |
|---|
| 1412 | /* Process the initialization in multiple steps, where each step ends in setting a new voltage. This way each subsequent step (after the first) |
|---|
| 1413 | ** has an automatic delay that occured before our next call-back allowing the sequencer to make an additional pass and get new data. |
|---|
| 1414 | ** The third case is only necessary in order to allow everything to settle before (debug) printing the final register values. |
|---|
| 1415 | */ |
|---|
| 1416 | BDBG_MSG(("Starting initialization step %d:", handle->initialization_step)); |
|---|
| 1417 | switch (handle->initialization_step++) |
|---|
| 1418 | { |
|---|
| 1419 | case 0: |
|---|
| 1420 | /* Make sure this part has all the oscillators its supposed to */ |
|---|
| 1421 | AvsUpdateExcludeLists(handle); |
|---|
| 1422 | |
|---|
| 1423 | /* Perform some cleanup from CFE */ |
|---|
| 1424 | AvsCleanup(handle); |
|---|
| 1425 | |
|---|
| 1426 | /* Make sure the registers are prepared */ |
|---|
| 1427 | AvsInitializeRegisters(handle); |
|---|
| 1428 | |
|---|
| 1429 | /* Set the starting DAC from the saved value from first run (if any) */ |
|---|
| 1430 | AvsSetNewThresholds_0(handle); |
|---|
| 1431 | |
|---|
| 1432 | /* We don't do any further initialization for FF parts */ |
|---|
| 1433 | if (handle->ff_part) AvsInitComplete(handle); |
|---|
| 1434 | |
|---|
| 1435 | /* If the thresholds were already set in CFE then we don't need to set them here */ |
|---|
| 1436 | if (handle->thresholdsSet) AvsInitComplete(handle); |
|---|
| 1437 | break; |
|---|
| 1438 | |
|---|
| 1439 | case 1: |
|---|
| 1440 | /* Set the new lower thresholds based on the current voltage */ |
|---|
| 1441 | AvsSetNewThresholds_1(handle); |
|---|
| 1442 | break; |
|---|
| 1443 | |
|---|
| 1444 | case 2: |
|---|
| 1445 | /* Set the new upper thresholds based on the current voltage */ |
|---|
| 1446 | AvsSetNewThresholds_2(handle); |
|---|
| 1447 | /*break; <-- don't need to break if NOT printing the new threshold values */ |
|---|
| 1448 | |
|---|
| 1449 | case 3: |
|---|
| 1450 | /*printOscillators(handle, "New Thresholds Set:", true);*/ |
|---|
| 1451 | AvsInitComplete(handle); |
|---|
| 1452 | break; |
|---|
| 1453 | } |
|---|
| 1454 | |
|---|
| 1455 | /* We always reset the sequencer on the way out. This will cause it to generate new values for the next pass. |
|---|
| 1456 | ** This assumes that we do this processing on a periodic basis AND that the period is enough to allow the sequencer |
|---|
| 1457 | ** to generate the new values before we get called back. |
|---|
| 1458 | */ |
|---|
| 1459 | AvsResetSequencers(handle->hRegister); |
|---|
| 1460 | /*AvsClearInterruptFlags(handle->hRegister);*/ |
|---|
| 1461 | } |
|---|
| 1462 | |
|---|
| 1463 | static void AvsUpdate(BCHP_P_AvsHandle handle) |
|---|
| 1464 | { |
|---|
| 1465 | /* Note: we read and print the values before we make any changes as the change can cause mis-reads on voltage values */ |
|---|
| 1466 | AvsReadPvt(handle); |
|---|
| 1467 | |
|---|
| 1468 | if (!handle->last_dac) handle->last_dac = AvsGetDAC(handle); |
|---|
| 1469 | handle->last_temp = AvsGetTemperature(handle); |
|---|
| 1470 | |
|---|
| 1471 | #if BDBG_DEBUG_BUILD |
|---|
| 1472 | { |
|---|
| 1473 | /* The formula is: centigrade = 418 - (.5556 * temp_reg) [multiplied everything by 1000 in order to get fractional part] */ |
|---|
| 1474 | signed temperature = 418*1000 - (556 * handle->last_temp); |
|---|
| 1475 | BDBG_MSG(("Voltage = %d.%03dV (0x%x), DAC = %d (0x%x), Temp = [%c%d.%03dC] (0x%x)", |
|---|
| 1476 | mantissa(handle->last_voltage), fraction(handle->last_voltage), handle->last_voltage, |
|---|
| 1477 | handle->last_dac, handle->last_dac, |
|---|
| 1478 | sign(temperature), mantissa(temperature), fraction(temperature), handle->last_temp)); |
|---|
| 1479 | } |
|---|
| 1480 | #endif |
|---|
| 1481 | |
|---|
| 1482 | /* |
|---|
| 1483 | ** Note: you'd think we could use the interrupt value to tell us whether all the oscillators are above the upper threshold |
|---|
| 1484 | ** or if one is below the lower, but in the current part the interrupt doesn't appear to work if using remote oscillators. |
|---|
| 1485 | ** So converge or check the voltage on every pass... |
|---|
| 1486 | */ |
|---|
| 1487 | |
|---|
| 1488 | if (handle->ff_part) |
|---|
| 1489 | AvsConstantVoltageProcess(handle); |
|---|
| 1490 | else |
|---|
| 1491 | AvsConvergeProcess(handle); |
|---|
| 1492 | |
|---|
| 1493 | /* When you reset the sequencer it takes a while for the values to be valid. |
|---|
| 1494 | ** If we reset on the way out of this routine we won't be called back until later when all the values are valid. |
|---|
| 1495 | */ |
|---|
| 1496 | AvsResetSequencers(handle->hRegister); |
|---|
| 1497 | } |
|---|
| 1498 | |
|---|
| 1499 | /* TODO: update this to use 'rmt' common utils code to do the save and restore for me */ |
|---|
| 1500 | |
|---|
| 1501 | /* Save a copy of the registers we set. |
|---|
| 1502 | ** This can be used to ensure that none of our registers were stepped on by someother code. |
|---|
| 1503 | ** This can also be used to save a copy of the registers in memory prior to entering low-power mode. |
|---|
| 1504 | */ |
|---|
| 1505 | static void AvsSaveRegisters(BCHP_P_AvsHandle handle) |
|---|
| 1506 | { |
|---|
| 1507 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1508 | unsigned int i; |
|---|
| 1509 | |
|---|
| 1510 | handle->saved_registers.min_dac = BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MIN_DAC_CODE); |
|---|
| 1511 | handle->saved_registers.max_dac = BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MAX_DAC_CODE); |
|---|
| 1512 | handle->saved_registers.dac = BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE); |
|---|
| 1513 | /* Note: we save them ALL (including the ones we reserved and the ones we're not using) */ |
|---|
| 1514 | for (i=0; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1515 | { |
|---|
| 1516 | handle->saved_registers.central_thresholds_min[i] = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (i*4)); |
|---|
| 1517 | handle->saved_registers.central_thresholds_max[i] = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (i*4)); |
|---|
| 1518 | } |
|---|
| 1519 | handle->saved_registers.remote_hvt_min = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8H); |
|---|
| 1520 | handle->saved_registers.remote_hvt_max = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8H); |
|---|
| 1521 | handle->saved_registers.remote_svt_min = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8S); |
|---|
| 1522 | handle->saved_registers.remote_svt_max = BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8S); |
|---|
| 1523 | |
|---|
| 1524 | handle->saved_registers.sw_controls = BREG_Read32(hRegister, BCHP_AVS_HW_MNTR_SW_CONTROLS); |
|---|
| 1525 | handle->saved_registers.default_cent0 = BREG_Read32(hRegister, BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_0); |
|---|
| 1526 | handle->saved_registers.default_cent1 = BREG_Read32(hRegister, BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_1); |
|---|
| 1527 | handle->saved_registers.measurement = BREG_Read32(hRegister, BCHP_AVS_HW_MNTR_ROSC_MEASUREMENT_TIME_CONTROL); |
|---|
| 1528 | |
|---|
| 1529 | handle->saved_registers.valid = true; /* okay to use the saved set */ |
|---|
| 1530 | |
|---|
| 1531 | #if defined(BCHP_PWR_SUPPORT) && defined(SAVE_TO_AON) |
|---|
| 1532 | /* We need to save the current DAC and PCT_MON_CTRL values so CFE can restore them as part of a warm boot */ |
|---|
| 1533 | { |
|---|
| 1534 | uint32_t pvt_ctrl = BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_PVT_MNTR_CTRL); |
|---|
| 1535 | uint32_t dac_code = BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE); |
|---|
| 1536 | dac_code &= 0xffff; |
|---|
| 1537 | dac_code |= (AVS_CFE_MAGIC<<16); /* tell CFE that these values are valid */ |
|---|
| 1538 | #define AON_DAC_CODE_REGISTER 83 /* these were negotiated with Linux and Power Management guys */ |
|---|
| 1539 | BREG_Write32(hRegister, BCHP_AON_CTRL_SYSTEM_DATA_RAMi_ARRAY_BASE + (AON_DAC_CODE_REGISTER*4), dac_code); |
|---|
| 1540 | #define AON_PVT_CTRL_REGISTER 84 |
|---|
| 1541 | BREG_Write32(hRegister, BCHP_AON_CTRL_SYSTEM_DATA_RAMi_ARRAY_BASE + (AON_PVT_CTRL_REGISTER*4), pvt_ctrl); |
|---|
| 1542 | #define AON_PV_SAVE_REGISTER 85 |
|---|
| 1543 | BREG_Write32(hRegister, BCHP_AON_CTRL_SYSTEM_DATA_RAMi_ARRAY_BASE + (AON_PV_SAVE_REGISTER*4), handle->saved_predicted); |
|---|
| 1544 | } |
|---|
| 1545 | #endif |
|---|
| 1546 | } |
|---|
| 1547 | |
|---|
| 1548 | /* This is used to restore the saved set of registers. |
|---|
| 1549 | ** This is used to fix an issue where our registers were stepped on (restore=false). |
|---|
| 1550 | ** This is also used to restore the registers when exiting out of low-power mode (restore=true). |
|---|
| 1551 | */ |
|---|
| 1552 | static void AvsRestoreRegisters(BCHP_P_AvsHandle handle, bool restore) |
|---|
| 1553 | { |
|---|
| 1554 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1555 | unsigned int i; |
|---|
| 1556 | |
|---|
| 1557 | if (!handle->saved_registers.valid) { |
|---|
| 1558 | BDBG_ERR(("Attempt to restore saved AVS registers from invalid save set!")); |
|---|
| 1559 | return; |
|---|
| 1560 | } |
|---|
| 1561 | |
|---|
| 1562 | if (restore) AvsInitializeRegisters(handle); |
|---|
| 1563 | |
|---|
| 1564 | #if 0 |
|---|
| 1565 | /* This version enables and then sets the values to use */ |
|---|
| 1566 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 1); /* enable writing */ |
|---|
| 1567 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MIN_DAC_CODE, handle->saved_registers.min_dac); |
|---|
| 1568 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MAX_DAC_CODE, handle->saved_registers.max_dac); |
|---|
| 1569 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE, handle->saved_registers.dac); |
|---|
| 1570 | #else |
|---|
| 1571 | /* This version sets the value (in shadow copies) which get loaded on the enable */ |
|---|
| 1572 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MIN_DAC_CODE, handle->saved_registers.min_dac); |
|---|
| 1573 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MAX_DAC_CODE, handle->saved_registers.max_dac); |
|---|
| 1574 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE, handle->saved_registers.dac); |
|---|
| 1575 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 1); /* enable writing */ |
|---|
| 1576 | #endif |
|---|
| 1577 | #ifndef LEAVE_ENABLE_SET |
|---|
| 1578 | BKNI_Delay(10); |
|---|
| 1579 | BREG_Write32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE_PROGRAMMING_ENABLE, 0); /* disable writing */ |
|---|
| 1580 | #endif |
|---|
| 1581 | /* Note: we saved them ALL so restore them all */ |
|---|
| 1582 | for (i=0; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1583 | { |
|---|
| 1584 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (i*4), handle->saved_registers.central_thresholds_min[i]); |
|---|
| 1585 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (i*4), handle->saved_registers.central_thresholds_max[i]); |
|---|
| 1586 | } |
|---|
| 1587 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8H, handle->saved_registers.remote_hvt_min); |
|---|
| 1588 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8H, handle->saved_registers.remote_hvt_max); |
|---|
| 1589 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8S, handle->saved_registers.remote_svt_min); |
|---|
| 1590 | BREG_Write32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8S, handle->saved_registers.remote_svt_max); |
|---|
| 1591 | |
|---|
| 1592 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_SW_CONTROLS, handle->saved_registers.sw_controls); |
|---|
| 1593 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_0, handle->saved_registers.default_cent0); |
|---|
| 1594 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_ENABLE_DEFAULT_CEN_ROSC_1, handle->saved_registers.default_cent1); |
|---|
| 1595 | BREG_Write32(hRegister, BCHP_AVS_HW_MNTR_ROSC_MEASUREMENT_TIME_CONTROL, handle->saved_registers.measurement); |
|---|
| 1596 | |
|---|
| 1597 | BREG_Write32(hRegister, SAVED_DAC, handle->original_dac); |
|---|
| 1598 | BREG_Write32(hRegister, PREDICTED_VOLTAGE, handle->saved_predicted); |
|---|
| 1599 | BREG_Write32(hRegister, CLOSED_DAC, 0); /* make sure this is zero until we make it not zero */ |
|---|
| 1600 | |
|---|
| 1601 | handle->saved_registers.valid = false; /* technically its still okay to use but this will find a restore without a save */ |
|---|
| 1602 | } |
|---|
| 1603 | |
|---|
| 1604 | #if 0 |
|---|
| 1605 | /* Test all of my "important" registers to see if they got stepped on. |
|---|
| 1606 | ** We can do a save before leaving on each pass of the monitoring function and check on entry. |
|---|
| 1607 | ** IF there is a verify error, the restore can put the registers back to what they should be. |
|---|
| 1608 | */ |
|---|
| 1609 | static int AvsCheckSaveRegisters(BCHP_P_AvsHandle handle) |
|---|
| 1610 | { |
|---|
| 1611 | BREG_Handle hRegister = handle->hRegister; |
|---|
| 1612 | unsigned int i, result=0; |
|---|
| 1613 | |
|---|
| 1614 | if ((result |= handle->saved_registers.min_dac == BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MIN_DAC_CODE))) |
|---|
| 1615 | BDBG_ERR(("Check: MIN_DAC stepped on!")); |
|---|
| 1616 | if ((result |= handle->saved_registers.max_dac == BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_MAX_DAC_CODE))) |
|---|
| 1617 | BDBG_ERR(("Check: MAX_DAC stepped on!")); |
|---|
| 1618 | if ((result |= handle->saved_registers.dac == BREG_Read32(hRegister, BCHP_AVS_PVT_MNTR_CONFIG_DAC_CODE))) |
|---|
| 1619 | BDBG_ERR(("Check: DAC_CODE stepped on!")); |
|---|
| 1620 | for (i=STARTING_OSCILLATOR; i<MAX_CENTRAL_OSCILLATORS; i++) |
|---|
| 1621 | { |
|---|
| 1622 | if ((result |= handle->saved_registers.central_thresholds_min[i] == BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_CEN_ROSC_0 + (i*4)))) |
|---|
| 1623 | BDBG_ERR(("Check: Central threshold MIN %d stepped on!", i)); |
|---|
| 1624 | if ((result |= handle->saved_registers.central_thresholds_max[i] == BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_CEN_ROSC_0 + (i*4)))) |
|---|
| 1625 | BDBG_ERR(("Check: Central threshold MAX %d stepped on!", i)); |
|---|
| 1626 | } |
|---|
| 1627 | if ((result |= handle->saved_registers.remote_hvt_min == BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8H))) |
|---|
| 1628 | BDBG_ERR(("Check: Remote threshold HVT min stepped on!")); |
|---|
| 1629 | if ((result |= handle->saved_registers.remote_hvt_max == BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8H))) |
|---|
| 1630 | BDBG_ERR(("Check: Remote threshold HVT max stepped on!")); |
|---|
| 1631 | if ((result |= handle->saved_registers.remote_svt_min == BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_1_THRESHOLD1_RMT_ROSC_G8S))) |
|---|
| 1632 | BDBG_ERR(("Check: Remote threshold SVT min stepped on!")); |
|---|
| 1633 | if ((result |= handle->saved_registers.remote_svt_max == BREG_Read32(hRegister, BCHP_AVS_ROSC_THRESHOLD_2_THRESHOLD2_RMT_ROSC_G8S))) |
|---|
| 1634 | BDBG_ERR(("Check: Remote threshold SVT max stepped on!")); |
|---|
| 1635 | |
|---|
| 1636 | return result; |
|---|
| 1637 | } |
|---|
| 1638 | #endif |
|---|
| 1639 | |
|---|
| 1640 | /* The following are included for test purposes */ |
|---|
| 1641 | |
|---|
| 1642 | BERR_Code AvsLock(BCHP_P_AvsHandle handle) |
|---|
| 1643 | { |
|---|
| 1644 | BDBG_ENTER(BCHP_AvsLock); |
|---|
| 1645 | handle->lock_enabled = true; |
|---|
| 1646 | BDBG_LEAVE(BCHP_AvsLock); |
|---|
| 1647 | return BERR_SUCCESS; |
|---|
| 1648 | } |
|---|
| 1649 | |
|---|
| 1650 | BERR_Code AvsUnlock(BCHP_P_AvsHandle handle) |
|---|
| 1651 | { |
|---|
| 1652 | BDBG_ENTER(BCHP_AvsUnlock); |
|---|
| 1653 | handle->lock_enabled = false; |
|---|
| 1654 | BDBG_LEAVE(BCHP_AvsUnlock); |
|---|
| 1655 | return BERR_SUCCESS; |
|---|
| 1656 | } |
|---|
| 1657 | |
|---|
| 1658 | void AvsGetTestData(BCHP_P_AvsHandle handle, AvsTestData *data) |
|---|
| 1659 | { |
|---|
| 1660 | BDBG_ASSERT(handle); |
|---|
| 1661 | BDBG_ASSERT(data); |
|---|
| 1662 | |
|---|
| 1663 | data->valid = false; |
|---|
| 1664 | if (!handle->initialized) return; |
|---|
| 1665 | |
|---|
| 1666 | data->last_dac = handle->last_dac; |
|---|
| 1667 | data->last_temp = handle->last_temp; |
|---|
| 1668 | |
|---|
| 1669 | data->V_0p99 = handle->V_0p99; |
|---|
| 1670 | data->V_1p1_0 = handle->V_1p1_0; |
|---|
| 1671 | data->V_1p1_1 = handle->V_1p1_1; |
|---|
| 1672 | data->V_2p75 = handle->V_2p75; |
|---|
| 1673 | data->V_3p63 = handle->V_3p63; |
|---|
| 1674 | |
|---|
| 1675 | data->last_voltage_1p1_0 = handle->last_voltage_1p1_0; |
|---|
| 1676 | data->last_voltage_1p1_1 = handle->last_voltage_1p1_1; |
|---|
| 1677 | data->last_voltage_0p99 = handle->last_voltage_0p99; |
|---|
| 1678 | data->last_voltage_2p75 = handle->last_voltage_2p75; |
|---|
| 1679 | data->last_voltage_3p63 = handle->last_voltage_3p63; |
|---|
| 1680 | |
|---|
| 1681 | data->valid = true; |
|---|
| 1682 | } |
|---|
| 1683 | |
|---|