source: svn/newcon3bcm2_21bu/toolchain/include/c++/3.4.2/ext/bitmap_allocator.h

Last change on this file was 76, checked in by megakiss, 10 years ago

1W 대기전력을 만족시키기 위하여 POWEROFF시 튜너를 Standby 상태로 함

  • Property svn:executable set to *
File size: 26.6 KB
Line 
1// Bitmapped Allocator. -*- C++ -*-
2
3// Copyright (C) 2004 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30
31
32#if !defined _BITMAP_ALLOCATOR_H
33#define _BITMAP_ALLOCATOR_H 1
34
35#include <cstddef>
36//For std::size_t, and ptrdiff_t.
37#include <utility>
38//For std::pair.
39#include <algorithm>
40//std::find_if, and std::lower_bound.
41#include <vector>
42//For the free list of exponentially growing memory blocks. At max,
43//size of the vector should be  not more than the number of bits in an
44//integer or an unsigned integer.
45#include <functional>
46//For greater_equal, and less_equal.
47#include <new>
48//For operator new.
49#include <bits/gthr.h>
50//For __gthread_mutex_t, __gthread_mutex_lock and __gthread_mutex_unlock.
51#include <ext/new_allocator.h>
52//For __gnu_cxx::new_allocator for std::vector.
53
54#include <cassert>
55#define NDEBUG
56
57//#define CHECK_FOR_ERRORS
58//#define __CPU_HAS_BACKWARD_BRANCH_PREDICTION
59
60namespace __gnu_cxx
61{
62  namespace {
63#if defined __GTHREADS
64    bool const __threads_enabled = __gthread_active_p();
65#endif
66
67  }
68
69#if defined __GTHREADS
70  class _Mutex {
71    __gthread_mutex_t _M_mut;
72    //Prevent Copying and assignment.
73    _Mutex (_Mutex const&);
74    _Mutex& operator= (_Mutex const&);
75  public:
76    _Mutex ()
77    {
78      if (__threads_enabled)
79        {
80#if !defined __GTHREAD_MUTEX_INIT
81          __GTHREAD_MUTEX_INIT_FUNCTION(&_M_mut);
82#else
83          __gthread_mutex_t __mtemp = __GTHREAD_MUTEX_INIT;
84          _M_mut = __mtemp;
85#endif
86        }
87    }
88    ~_Mutex ()
89    {
90      //Gthreads does not define a Mutex Destruction Function.
91    }
92    __gthread_mutex_t *_M_get() { return &_M_mut; }
93  };
94
95  class _Lock {
96    _Mutex* _M_pmt;
97    bool _M_locked;
98    //Prevent Copying and assignment.
99    _Lock (_Lock const&);
100    _Lock& operator= (_Lock const&);
101  public:
102    _Lock(_Mutex* __mptr)
103      : _M_pmt(__mptr), _M_locked(false)
104    { this->_M_lock(); }
105    void _M_lock()
106    {
107      if (__threads_enabled)
108        {
109          _M_locked = true;
110          __gthread_mutex_lock(_M_pmt->_M_get());
111        }
112    }
113    void _M_unlock()
114    {
115      if (__threads_enabled)
116        {
117          if (__builtin_expect(_M_locked, true))
118            {
119              __gthread_mutex_unlock(_M_pmt->_M_get());
120              _M_locked = false;
121            }
122        }
123    }
124    ~_Lock() { this->_M_unlock(); }
125  };
126#endif
127
128
129
130  namespace __aux_balloc {
131    static const unsigned int _Bits_Per_Byte = 8;
132    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
133
134    template <typename _Addr_Pair_t>
135    inline size_t __balloc_num_blocks (_Addr_Pair_t __ap)
136    {
137      return (__ap.second - __ap.first) + 1;
138    }
139
140    template <typename _Addr_Pair_t>
141    inline size_t __balloc_num_bit_maps (_Addr_Pair_t __ap)
142    {
143      return __balloc_num_blocks(__ap) / _Bits_Per_Block;
144    }
145
146    //T should be a pointer type.
147    template <typename _Tp>
148    class _Inclusive_between : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
149      typedef _Tp pointer;
150      pointer _M_ptr_value;
151      typedef typename std::pair<_Tp, _Tp> _Block_pair;
152
153    public:
154      _Inclusive_between (pointer __ptr) : _M_ptr_value(__ptr) { }
155      bool operator () (_Block_pair __bp) const throw ()
156      {
157        if (std::less_equal<pointer> ()(_M_ptr_value, __bp.second) && 
158            std::greater_equal<pointer> ()(_M_ptr_value, __bp.first))
159          return true;
160        else
161          return false;
162      }
163    };
164 
165    //Used to pass a Functor to functions by reference.
166    template <typename _Functor>
167    class _Functor_Ref : 
168      public std::unary_function<typename _Functor::argument_type, typename _Functor::result_type> {
169      _Functor& _M_fref;
170   
171    public:
172      typedef typename _Functor::argument_type argument_type;
173      typedef typename _Functor::result_type result_type;
174
175      _Functor_Ref (_Functor& __fref) : _M_fref(__fref) { }
176      result_type operator() (argument_type __arg) { return _M_fref (__arg); }
177    };
178
179
180    //T should be a pointer type, and A is the Allocator for the vector.
181    template <typename _Tp, typename _Alloc>
182    class _Ffit_finder
183      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool> {
184      typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
185      typedef typename _BPVector::difference_type _Counter_type;
186      typedef typename std::pair<_Tp, _Tp> _Block_pair;
187
188      unsigned int *_M_pbitmap;
189      unsigned int _M_data_offset;
190
191    public:
192      _Ffit_finder () 
193        : _M_pbitmap (0), _M_data_offset (0)
194      { }
195
196      bool operator() (_Block_pair __bp) throw()
197      {
198        //Set the _rover to the last unsigned integer, which is the
199        //bitmap to the first free block. Thus, the bitmaps are in exact
200        //reverse order of the actual memory layout. So, we count down
201        //the bimaps, which is the same as moving up the memory.
202
203        //If the used count stored at the start of the Bit Map headers
204        //is equal to the number of Objects that the current Block can
205        //store, then there is definitely no space for another single
206        //object, so just return false.
207        _Counter_type __diff = __gnu_cxx::__aux_balloc::__balloc_num_bit_maps (__bp);
208
209        assert (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) <= 
210                __gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp));
211
212        if (*(reinterpret_cast<unsigned int*>(__bp.first) - (__diff + 1)) == 
213            __gnu_cxx::__aux_balloc::__balloc_num_blocks (__bp))
214          return false;
215
216        unsigned int *__rover = reinterpret_cast<unsigned int*>(__bp.first) - 1;
217        for (_Counter_type __i = 0; __i < __diff; ++__i)
218          {
219            _M_data_offset = __i;
220            if (*__rover)
221              {
222                _M_pbitmap = __rover;
223                return true;
224              }
225            --__rover;
226          }
227        return false;
228      }
229   
230      unsigned int *_M_get () { return _M_pbitmap; }
231      unsigned int _M_offset () { return _M_data_offset * _Bits_Per_Block; }
232    };
233 
234    //T should be a pointer type.
235    template <typename _Tp, typename _Alloc>
236    class _Bit_map_counter {
237   
238      typedef typename std::vector<std::pair<_Tp, _Tp>, _Alloc> _BPVector;
239      typedef typename _BPVector::size_type _Index_type;
240      typedef _Tp pointer;
241   
242      _BPVector& _M_vbp;
243      unsigned int *_M_curr_bmap;
244      unsigned int *_M_last_bmap_in_block;
245      _Index_type _M_curr_index;
246   
247    public:
248      //Use the 2nd parameter with care. Make sure that such an entry
249      //exists in the vector before passing that particular index to
250      //this ctor.
251      _Bit_map_counter (_BPVector& Rvbp, int __index = -1) 
252        : _M_vbp(Rvbp)
253      {
254        this->_M_reset(__index);
255      }
256   
257      void _M_reset (int __index = -1) throw()
258      {
259        if (__index == -1)
260          {
261            _M_curr_bmap = 0;
262            _M_curr_index = (_Index_type)-1;
263            return;
264          }
265
266        _M_curr_index = __index;
267        _M_curr_bmap = reinterpret_cast<unsigned int*>(_M_vbp[_M_curr_index].first) - 1;
268
269        assert (__index <= (int)_M_vbp.size() - 1);
270       
271        _M_last_bmap_in_block = _M_curr_bmap - 
272          ((_M_vbp[_M_curr_index].second - _M_vbp[_M_curr_index].first + 1) / _Bits_Per_Block - 1);
273      }
274   
275      //Dangerous Function! Use with extreme care. Pass to this
276      //function ONLY those values that are known to be correct,
277      //otherwise this will mess up big time.
278      void _M_set_internal_bit_map (unsigned int *__new_internal_marker) throw()
279      {
280        _M_curr_bmap = __new_internal_marker;
281      }
282   
283      bool _M_finished () const throw()
284      {
285        return (_M_curr_bmap == 0);
286      }
287   
288      _Bit_map_counter& operator++ () throw()
289      {
290        if (_M_curr_bmap == _M_last_bmap_in_block)
291          {
292            if (++_M_curr_index == _M_vbp.size())
293              {
294                _M_curr_bmap = 0;
295              }
296            else
297              {
298                this->_M_reset (_M_curr_index);
299              }
300          }
301        else
302          {
303            --_M_curr_bmap;
304          }
305        return *this;
306      }
307   
308      unsigned int *_M_get ()
309      {
310        return _M_curr_bmap;
311      }
312   
313      pointer _M_base () { return _M_vbp[_M_curr_index].first; }
314      unsigned int _M_offset ()
315      {
316        return _Bits_Per_Block * ((reinterpret_cast<unsigned int*>(this->_M_base()) - _M_curr_bmap) - 1);
317      }
318   
319      unsigned int _M_where () { return _M_curr_index; }
320    };
321  }
322
323  //Generic Version of the bsf instruction.
324  typedef unsigned int _Bit_map_type;
325  static inline unsigned int _Bit_scan_forward (register _Bit_map_type __num)
326  {
327    return static_cast<unsigned int>(__builtin_ctz(__num));
328  }
329
330  struct _OOM_handler {
331    static std::new_handler _S_old_handler;
332    static bool _S_handled_oom;
333    typedef void (*_FL_clear_proc)(void);
334    static _FL_clear_proc _S_oom_fcp;
335   
336    _OOM_handler (_FL_clear_proc __fcp)
337    {
338      _S_oom_fcp = __fcp;
339      _S_old_handler = std::set_new_handler (_S_handle_oom_proc);
340      _S_handled_oom = false;
341    }
342
343    static void _S_handle_oom_proc()
344    {
345      _S_oom_fcp();
346      std::set_new_handler (_S_old_handler);
347      _S_handled_oom = true;
348    }
349
350    ~_OOM_handler ()
351    {
352      if (!_S_handled_oom)
353        std::set_new_handler (_S_old_handler);
354    }
355  };
356 
357  std::new_handler _OOM_handler::_S_old_handler;
358  bool _OOM_handler::_S_handled_oom = false;
359  _OOM_handler::_FL_clear_proc _OOM_handler::_S_oom_fcp = 0;
360 
361
362  class _BA_free_list_store {
363    struct _LT_pointer_compare {
364      template <typename _Tp>
365      bool operator() (_Tp* __pt, _Tp const& __crt) const throw()
366      {
367        return *__pt < __crt;
368      }
369    };
370
371#if defined __GTHREADS
372    static _Mutex _S_bfl_mutex;
373#endif
374    static std::vector<unsigned int*> _S_free_list;
375    typedef std::vector<unsigned int*>::iterator _FLIter;
376
377    static void _S_validate_free_list(unsigned int *__addr) throw()
378    {
379      const unsigned int __max_size = 64;
380      if (_S_free_list.size() >= __max_size)
381        {
382          //Ok, the threshold value has been reached.
383          //We determine which block to remove from the list of free
384          //blocks.
385          if (*__addr >= *_S_free_list.back())
386            {
387              //Ok, the new block is greater than or equal to the last
388              //block in the list of free blocks. We just free the new
389              //block.
390              operator delete((void*)__addr);
391              return;
392            }
393          else
394            {
395              //Deallocate the last block in the list of free lists, and
396              //insert the new one in it's correct position.
397              operator delete((void*)_S_free_list.back());
398              _S_free_list.pop_back();
399            }
400        }
401         
402      //Just add the block to the list of free lists
403      //unconditionally.
404      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
405                                        *__addr, _LT_pointer_compare ());
406      //We may insert the new free list before _temp;
407      _S_free_list.insert(__temp, __addr);
408    }
409
410    static bool _S_should_i_give(unsigned int __block_size, unsigned int __required_size) throw()
411    {
412      const unsigned int __max_wastage_percentage = 36;
413      if (__block_size >= __required_size && 
414          (((__block_size - __required_size) * 100 / __block_size) < __max_wastage_percentage))
415        return true;
416      else
417        return false;
418    }
419
420  public:
421    typedef _BA_free_list_store _BFL_type;
422
423    static inline void _S_insert_free_list(unsigned int *__addr) throw()
424    {
425#if defined __GTHREADS
426      _Lock __bfl_lock(&_S_bfl_mutex);
427#endif
428      //Call _S_validate_free_list to decide what should be done with this
429      //particular free list.
430      _S_validate_free_list(--__addr);
431    }
432   
433    static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc)
434    {
435#if defined __GTHREADS
436      _Lock __bfl_lock(&_S_bfl_mutex);
437#endif
438      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 
439                                        __sz, _LT_pointer_compare());
440      if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz))
441        {
442          //We hold the lock because the OOM_Handler is a stateless
443          //entity.
444          _OOM_handler __set_handler(_BFL_type::_S_clear);
445          unsigned int *__ret_val = reinterpret_cast<unsigned int*>
446            (operator new (__sz + sizeof(unsigned int)));
447          *__ret_val = __sz;
448          return ++__ret_val;
449        }
450      else
451        {
452          unsigned int* __ret_val = *__temp;
453          _S_free_list.erase (__temp);
454          return ++__ret_val;
455        }
456    }
457
458    //This function just clears the internal Free List, and gives back
459    //all the memory to the OS.
460    static void _S_clear()
461    {
462#if defined __GTHREADS
463      _Lock __bfl_lock(&_S_bfl_mutex);
464#endif
465      _FLIter __iter = _S_free_list.begin();
466      while (__iter != _S_free_list.end())
467        {
468          operator delete((void*)*__iter);
469          ++__iter;
470        }
471      _S_free_list.clear();
472    }
473
474  };
475
476#if defined __GTHREADS
477  _Mutex _BA_free_list_store::_S_bfl_mutex;
478#endif
479  std::vector<unsigned int*> _BA_free_list_store::_S_free_list;
480
481  template <typename _Tp> class bitmap_allocator;
482  // specialize for void:
483  template <> class bitmap_allocator<void> {
484  public:
485    typedef void*       pointer;
486    typedef const void* const_pointer;
487    //  reference-to-void members are impossible.
488    typedef void  value_type;
489    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
490  };
491
492  template <typename _Tp> class bitmap_allocator : private _BA_free_list_store {
493  public:
494    typedef size_t    size_type;
495    typedef ptrdiff_t difference_type;
496    typedef _Tp*        pointer;
497    typedef const _Tp*  const_pointer;
498    typedef _Tp&        reference;
499    typedef const _Tp&  const_reference;
500    typedef _Tp         value_type;
501    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };
502
503  private:
504    static const unsigned int _Bits_Per_Byte = 8;
505    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;
506
507    static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw()
508    {
509      unsigned int __mask = 1 << __pos;
510      __mask = ~__mask;
511      *__pbmap &= __mask;
512    }
513 
514    static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw()
515    {
516      unsigned int __mask = 1 << __pos;
517      *__pbmap |= __mask;
518    }
519
520    static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc)
521    {
522      return operator new(__sz);
523    }
524
525    static inline void _S_memory_put(void *__vptr) throw ()
526    {
527      operator delete(__vptr);
528    }
529
530    typedef typename std::pair<pointer, pointer> _Block_pair;
531    typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type;
532    typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;
533
534
535#if defined CHECK_FOR_ERRORS
536    //Complexity: O(lg(N)). Where, N is the number of block of size
537    //sizeof(value_type).
538    static void _S_check_for_free_blocks() throw()
539    {
540      typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
541      _FFF __fff;
542      typedef typename _BPVector::iterator _BPiter;
543      _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
544                                   __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
545      assert(__bpi == _S_mem_blocks.end());
546    }
547#endif
548
549
550    //Complexity: O(1), but internally depends upon the complexity of
551    //the function _BA_free_list_store::_S_get_free_list. The part
552    //where the bitmap headers are written is of worst case complexity:
553    //O(X),where X is the number of blocks of size sizeof(value_type)
554    //within the newly acquired block. Having a tight bound.
555    static void _S_refill_pool() throw (std::bad_alloc)
556    {
557#if defined CHECK_FOR_ERRORS
558      _S_check_for_free_blocks();
559#endif
560
561      const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block;
562      const unsigned int __size_to_allocate = sizeof(unsigned int) + 
563        _S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int);
564
565      unsigned int *__temp = 
566        reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate));
567      *__temp = 0;
568      ++__temp;
569
570      //The Header information goes at the Beginning of the Block.
571      _Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps), 
572                                       reinterpret_cast<pointer>(__temp + __num_bit_maps) 
573                                        + _S_block_size - 1);
574
575      //Fill the Vector with this information.
576      _S_mem_blocks.push_back(__bp);
577
578      unsigned int __bit_mask = 0; //0 Indicates all Allocated.
579      __bit_mask = ~__bit_mask; //1 Indicates all Free.
580
581      for (unsigned int __i = 0; __i < __num_bit_maps; ++__i)
582        __temp[__i] = __bit_mask;
583
584      //On some implementations, operator new might throw bad_alloc, or
585      //malloc might fail if the size passed is too large, therefore, we
586      //limit the size passed to malloc or operator new.
587      _S_block_size *= 2;
588    }
589
590    static _BPVector _S_mem_blocks;
591    static unsigned int _S_block_size;
592    static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request;
593    static typename _BPVector::size_type _S_last_dealloc_index;
594#if defined __GTHREADS
595    static _Mutex _S_mut;
596#endif
597
598    //Complexity: Worst case complexity is O(N), but that is hardly ever
599    //hit. if and when this particular case is encountered, the next few
600    //cases are guaranteed to have a worst case complexity of O(1)!
601    //That's why this function performs very well on the average. you
602    //can consider this function to be having a complexity refrred to
603    //commonly as: Amortized Constant time.
604    static pointer _S_allocate_single_object()
605    {
606#if defined __GTHREADS
607      _Lock __bit_lock(&_S_mut);
608#endif
609
610      //The algorithm is something like this: The last_requst variable
611      //points to the last accessed Bit Map. When such a condition
612      //occurs, we try to find a free block in the current bitmap, or
613      //succeeding bitmaps until the last bitmap is reached. If no free
614      //block turns up, we resort to First Fit method.
615
616      //WARNING: Do not re-order the condition in the while statement
617      //below, because it relies on C++'s short-circuit
618      //evaluation. The return from _S_last_request->_M_get() will NOT
619      //be dereferenceable if _S_last_request->_M_finished() returns
620      //true. This would inevitibly lead to a NULL pointer dereference
621      //if tinkered with.
622      while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0))
623        {
624          _S_last_request.operator++();
625        }
626
627      if (__builtin_expect(_S_last_request._M_finished() == true, false))
628        {
629          //Fall Back to First Fit algorithm.
630          typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;
631          _FFF __fff;
632          typedef typename _BPVector::iterator _BPiter;
633          _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
634                                      __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));
635
636          if (__bpi != _S_mem_blocks.end())
637            {
638              //Search was successful. Ok, now mark the first bit from
639              //the right as 0, meaning Allocated. This bit is obtained
640              //by calling _M_get() on __fff.
641              unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());
642              _S_bit_allocate(__fff._M_get(), __nz_bit);
643
644              _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
645
646              //Now, get the address of the bit we marked as allocated.
647              pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit;
648              unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) - 
649                (__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1);
650              ++(*__puse_count);
651              return __ret_val;
652            }
653          else
654            {
655              //Search was unsuccessful. We Add more memory to the pool
656              //by calling _S_refill_pool().
657              _S_refill_pool();
658
659              //_M_Reset the _S_last_request structure to the first free
660              //block's bit map.
661              _S_last_request._M_reset(_S_mem_blocks.size() - 1);
662
663              //Now, mark that bit as allocated.
664            }
665        }
666      //_S_last_request holds a pointer to a valid bit map, that points
667      //to a free block in memory.
668      unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
669      _S_bit_allocate(_S_last_request._M_get(), __nz_bit);
670
671      pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit;
672
673      unsigned int *__puse_count = reinterpret_cast<unsigned int*>
674        (_S_mem_blocks[_S_last_request._M_where()].first) - 
675        (__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
676      ++(*__puse_count);
677      return __ret_val;
678    }
679
680    //Complexity: O(lg(N)), but the worst case is hit quite often! I
681    //need to do something about this. I'll be able to work on it, only
682    //when I have some solid figures from a few real apps.
683    static void _S_deallocate_single_object(pointer __p) throw()
684    {
685#if defined __GTHREADS
686      _Lock __bit_lock(&_S_mut);
687#endif
688
689      typedef typename _BPVector::iterator _Iterator;
690      typedef typename _BPVector::difference_type _Difference_type;
691
692      _Difference_type __diff;
693      int __displacement;
694
695      assert(_S_last_dealloc_index >= 0);
696
697      if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index]))
698        {
699          assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);
700
701          //Initial Assumption was correct!
702          __diff = _S_last_dealloc_index;
703          __displacement = __p - _S_mem_blocks[__diff].first;
704        }
705      else
706        {
707          _Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 
708                                          __gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)));
709          assert(_iter != _S_mem_blocks.end());
710
711          __diff = _iter - _S_mem_blocks.begin();
712          __displacement = __p - _S_mem_blocks[__diff].first;
713          _S_last_dealloc_index = __diff;
714        }
715
716      //Get the position of the iterator that has been found.
717      const unsigned int __rotate = __displacement % _Bits_Per_Block;
718      unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;
719      __bit_mapC -= (__displacement / _Bits_Per_Block);
720     
721      _S_bit_free(__bit_mapC, __rotate);
722      unsigned int *__puse_count = reinterpret_cast<unsigned int*>
723        (_S_mem_blocks[__diff].first) - 
724        (__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1);
725
726      assert(*__puse_count != 0);
727
728      --(*__puse_count);
729
730      if (__builtin_expect(*__puse_count == 0, false))
731        {
732          _S_block_size /= 2;
733         
734          //We may safely remove this block.
735          _Block_pair __bp = _S_mem_blocks[__diff];
736          _S_insert_free_list(__puse_count);
737          _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
738
739          //We reset the _S_last_request variable to reflect the erased
740          //block. We do this to protect future requests after the last
741          //block has been removed from a particular memory Chunk,
742          //which in turn has been returned to the free list, and
743          //hence had been erased from the vector, so the size of the
744          //vector gets reduced by 1.
745          if ((_Difference_type)_S_last_request._M_where() >= __diff--)
746            {
747              _S_last_request._M_reset(__diff);
748              //              assert(__diff >= 0);
749            }
750
751          //If the Index into the vector of the region of memory that
752          //might hold the next address that will be passed to
753          //deallocated may have been invalidated due to the above
754          //erase procedure being called on the vector, hence we try
755          //to restore this invariant too.
756          if (_S_last_dealloc_index >= _S_mem_blocks.size())
757            {
758              _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
759              assert(_S_last_dealloc_index >= 0);
760            }
761        }
762    }
763
764  public:
765    bitmap_allocator() throw()
766    { }
767
768    bitmap_allocator(const bitmap_allocator&) { }
769
770    template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
771    { }
772
773    ~bitmap_allocator() throw()
774    { }
775
776    //Complexity: O(1), but internally the complexity depends upon the
777    //complexity of the function(s) _S_allocate_single_object and
778    //_S_memory_get.
779    pointer allocate(size_type __n)
780    {
781      if (__builtin_expect(__n == 1, true))
782        return _S_allocate_single_object();
783      else
784        return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type)));
785    }
786
787    //Complexity: Worst case complexity is O(N) where N is the number of
788    //blocks of size sizeof(value_type) within the free lists that the
789    //allocator holds. However, this worst case is hit only when the
790    //user supplies a bogus argument to hint. If the hint argument is
791    //sensible, then the complexity drops to O(lg(N)), and in extreme
792    //cases, even drops to as low as O(1). So, if the user supplied
793    //argument is good, then this function performs very well.
794    pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
795    {
796      return allocate(__n);
797    }
798
799    void deallocate(pointer __p, size_type __n) throw()
800    {
801      if (__builtin_expect(__n == 1, true))
802        _S_deallocate_single_object(__p);
803      else
804        _S_memory_put(__p);
805    }
806
807    pointer address(reference r) const { return &r; }
808    const_pointer address(const_reference r) const { return &r; }
809
810    size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); }
811
812    void construct (pointer p, const_reference __data)
813    {
814      ::new(p) value_type(__data);
815    }
816
817    void destroy (pointer p)
818    {
819      p->~value_type();
820    }
821
822  };
823
824  template <typename _Tp>
825  typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks;
826
827  template <typename _Tp>
828  unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block;
829
830  template <typename _Tp>
831  typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
832  bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
833
834  template <typename _Tp>
835  __gnu_cxx::__aux_balloc::_Bit_map_counter
836  <typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type> 
837  bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
838
839#if defined __GTHREADS
840  template <typename _Tp>
841  __gnu_cxx::_Mutex
842  bitmap_allocator<_Tp>::_S_mut;
843#endif
844
845  template <typename _Tp1, typename _Tp2>
846  bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
847  {
848    return true;
849  }
850 
851  template <typename _Tp1, typename _Tp2>
852  bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()
853  {
854    return false;
855  }
856}
857
858
859#endif //_BITMAP_ALLOCATOR_H
Note: See TracBrowser for help on using the repository browser.