source: svn/trunk/newcon3bcm2_21bu/toolchain/include/c++/3.4.2/bits/stl_map.h

Last change on this file was 2, checked in by jglee, 11 years ago

first commit

  • Property svn:executable set to *
File size: 25.7 KB
Line 
1// Map implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_map.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _MAP_H
62#define _MAP_H 1
63
64#include <bits/concept_check.h>
65
66namespace _GLIBCXX_STD
67{
68  /**
69   *  @brief A standard container made up of (key,value) pairs, which can be
70   *  retrieved based on a key, in logarithmic time.
71   *
72   *  @ingroup Containers
73   *  @ingroup Assoc_containers
74   *
75   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
76   *  <a href="tables.html#66">reversible container</a>, and an
77   *  <a href="tables.html#69">associative container</a> (using unique keys).
78   *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
79   *  value_type is std::pair<const Key,T>.
80   *
81   *  Maps support bidirectional iterators.
82   *
83   *  @if maint
84   *  The private tree data is declared exactly the same way for map and
85   *  multimap; the distinction is made entirely in how the tree functions are
86   *  called (*_unique versus *_equal, same as the standard).
87   *  @endif
88  */
89  template <typename _Key, typename _Tp, typename _Compare = less<_Key>,
90            typename _Alloc = allocator<pair<const _Key, _Tp> > >
91    class map
92    {
93      // concept requirements
94      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
95      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
96                                _BinaryFunctionConcept)
97
98    public:
99      typedef _Key                                          key_type;
100      typedef _Tp                                           mapped_type;
101      typedef pair<const _Key, _Tp>                         value_type;
102      typedef _Compare                                      key_compare;
103
104      class value_compare
105      : public binary_function<value_type, value_type, bool>
106      {
107        friend class map<_Key,_Tp,_Compare,_Alloc>;
108      protected:
109        _Compare comp;
110
111        value_compare(_Compare __c)
112        : comp(__c) { }
113
114      public:
115        bool operator()(const value_type& __x, const value_type& __y) const
116        { return comp(__x.first, __y.first); }
117      };
118
119    private:
120      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
121      typedef _Rb_tree<key_type, value_type,
122                       _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
123      /// @if maint  The actual tree structure.  @endif
124      _Rep_type _M_t;
125
126    public:
127      // many of these are specified differently in ISO, but the following are
128      // "functionally equivalent"
129      typedef typename _Alloc::pointer                   pointer;
130      typedef typename _Alloc::const_pointer             const_pointer;
131      typedef typename _Alloc::reference                 reference;
132      typedef typename _Alloc::const_reference           const_reference;
133      typedef typename _Rep_type::allocator_type         allocator_type;
134      typedef typename _Rep_type::iterator               iterator;
135      typedef typename _Rep_type::const_iterator         const_iterator;
136      typedef typename _Rep_type::size_type              size_type;
137      typedef typename _Rep_type::difference_type        difference_type;
138      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
139      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
140
141      // [23.3.1.1] construct/copy/destroy
142      // (get_allocator() is normally listed in this section, but seems to have
143      // been accidentally omitted in the printed standard)
144      /**
145       *  @brief  Default constructor creates no elements.
146       */
147      map()
148      : _M_t(_Compare(), allocator_type()) { }
149
150      // for some reason this was made a separate function
151      /**
152       *  @brief  Default constructor creates no elements.
153       */
154      explicit
155      map(const _Compare& __comp, const allocator_type& __a = allocator_type())
156      : _M_t(__comp, __a) { }
157
158      /**
159       *  @brief  Map copy constructor.
160       *  @param  x  A %map of identical element and allocator types.
161       *
162       *  The newly-created %map uses a copy of the allocation object used
163       *  by @a x.
164       */
165      map(const map& __x)
166      : _M_t(__x._M_t) { }
167
168      /**
169       *  @brief  Builds a %map from a range.
170       *  @param  first  An input iterator.
171       *  @param  last  An input iterator.
172       *
173       *  Create a %map consisting of copies of the elements from [first,last).
174       *  This is linear in N if the range is already sorted, and NlogN
175       *  otherwise (where N is distance(first,last)).
176       */
177      template <typename _InputIterator>
178        map(_InputIterator __first, _InputIterator __last)
179        : _M_t(_Compare(), allocator_type())
180        { _M_t.insert_unique(__first, __last); }
181
182      /**
183       *  @brief  Builds a %map from a range.
184       *  @param  first  An input iterator.
185       *  @param  last  An input iterator.
186       *  @param  comp  A comparison functor.
187       *  @param  a  An allocator object.
188       *
189       *  Create a %map consisting of copies of the elements from [first,last).
190       *  This is linear in N if the range is already sorted, and NlogN
191       *  otherwise (where N is distance(first,last)).
192       */
193      template <typename _InputIterator>
194        map(_InputIterator __first, _InputIterator __last,
195            const _Compare& __comp, const allocator_type& __a = allocator_type())
196        : _M_t(__comp, __a)
197        { _M_t.insert_unique(__first, __last); }
198
199      // FIXME There is no dtor declared, but we should have something generated
200      // by Doxygen.  I don't know what tags to add to this paragraph to make
201      // that happen:
202      /**
203       *  The dtor only erases the elements, and note that if the elements
204       *  themselves are pointers, the pointed-to memory is not touched in any
205       *  way.  Managing the pointer is the user's responsibilty.
206       */
207
208      /**
209       *  @brief  Map assignment operator.
210       *  @param  x  A %map of identical element and allocator types.
211       *
212       *  All the elements of @a x are copied, but unlike the copy constructor,
213       *  the allocator object is not copied.
214       */
215      map&
216      operator=(const map& __x)
217      {
218        _M_t = __x._M_t;
219        return *this;
220      }
221
222      /// Get a copy of the memory allocation object.
223      allocator_type
224      get_allocator() const
225      { return _M_t.get_allocator(); }
226
227      // iterators
228      /**
229       *  Returns a read/write iterator that points to the first pair in the
230       *  %map.
231       *  Iteration is done in ascending order according to the keys.
232       */
233      iterator
234      begin()
235      { return _M_t.begin(); }
236
237      /**
238       *  Returns a read-only (constant) iterator that points to the first pair
239       *  in the %map.  Iteration is done in ascending order according to the
240       *  keys.
241       */
242      const_iterator
243      begin() const
244      { return _M_t.begin(); }
245
246      /**
247       *  Returns a read/write iterator that points one past the last pair in
248       *  the %map.  Iteration is done in ascending order according to the keys.
249       */
250      iterator
251      end()
252      { return _M_t.end(); }
253
254      /**
255       *  Returns a read-only (constant) iterator that points one past the last
256       *  pair in the %map.  Iteration is done in ascending order according to
257       *  the keys.
258       */
259      const_iterator
260      end() const
261      { return _M_t.end(); }
262
263      /**
264       *  Returns a read/write reverse iterator that points to the last pair in
265       *  the %map.  Iteration is done in descending order according to the
266       *  keys.
267       */
268      reverse_iterator
269      rbegin()
270      { return _M_t.rbegin(); }
271
272      /**
273       *  Returns a read-only (constant) reverse iterator that points to the
274       *  last pair in the %map.  Iteration is done in descending order
275       *  according to the keys.
276       */
277      const_reverse_iterator
278      rbegin() const
279      { return _M_t.rbegin(); }
280
281      /**
282       *  Returns a read/write reverse iterator that points to one before the
283       *  first pair in the %map.  Iteration is done in descending order
284       *  according to the keys.
285       */
286      reverse_iterator
287      rend()
288      { return _M_t.rend(); }
289
290      /**
291       *  Returns a read-only (constant) reverse iterator that points to one
292       *  before the first pair in the %map.  Iteration is done in descending
293       *  order according to the keys.
294       */
295      const_reverse_iterator
296      rend() const
297      { return _M_t.rend(); }
298
299      // capacity
300      /** Returns true if the %map is empty.  (Thus begin() would equal
301       *  end().)
302      */
303      bool
304      empty() const
305      { return _M_t.empty(); }
306
307      /** Returns the size of the %map.  */
308      size_type
309      size() const
310      { return _M_t.size(); }
311
312      /** Returns the maximum size of the %map.  */
313      size_type
314      max_size() const
315      { return _M_t.max_size(); }
316
317      // [23.3.1.2] element access
318      /**
319       *  @brief  Subscript ( @c [] ) access to %map data.
320       *  @param  k  The key for which data should be retrieved.
321       *  @return  A reference to the data of the (key,data) %pair.
322       *
323       *  Allows for easy lookup with the subscript ( @c [] ) operator.  Returns
324       *  data associated with the key specified in subscript.  If the key does
325       *  not exist, a pair with that key is created using default values, which
326       *  is then returned.
327       *
328       *  Lookup requires logarithmic time.
329       */
330      mapped_type&
331      operator[](const key_type& __k)
332      {
333        // concept requirements
334        __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
335
336        iterator __i = lower_bound(__k);
337        // __i->first is greater than or equivalent to __k.
338        if (__i == end() || key_comp()(__k, (*__i).first))
339          __i = insert(__i, value_type(__k, mapped_type()));
340        return (*__i).second;
341      }
342
343      // modifiers
344      /**
345       *  @brief Attempts to insert a std::pair into the %map.
346       *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
347       *             pairs).
348       *  @return  A pair, of which the first element is an iterator that points
349       *           to the possibly inserted pair, and the second is a bool that
350       *           is true if the pair was actually inserted.
351       *
352       *  This function attempts to insert a (key, value) %pair into the %map.
353       *  A %map relies on unique keys and thus a %pair is only inserted if its
354       *  first element (the key) is not already present in the %map.
355       *
356       *  Insertion requires logarithmic time.
357       */
358      pair<iterator,bool>
359      insert(const value_type& __x)
360      { return _M_t.insert_unique(__x); }
361
362      /**
363       *  @brief Attempts to insert a std::pair into the %map.
364       *  @param  position  An iterator that serves as a hint as to where the
365       *                    pair should be inserted.
366       *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
367       *             pairs).
368       *  @return  An iterator that points to the element with key of @a x (may
369       *           or may not be the %pair passed in).
370       *
371       *  This function is not concerned about whether the insertion took place,
372       *  and thus does not return a boolean like the single-argument
373       *  insert() does.  Note that the first parameter is only a hint and can
374       *  potentially improve the performance of the insertion process.  A bad
375       *  hint would cause no gains in efficiency.
376       *
377       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
378       *  for more on "hinting".
379       *
380       *  Insertion requires logarithmic time (if the hint is not taken).
381       */
382      iterator
383      insert(iterator position, const value_type& __x)
384      { return _M_t.insert_unique(position, __x); }
385
386      /**
387       *  @brief A template function that attemps to insert a range of elements.
388       *  @param  first  Iterator pointing to the start of the range to be
389       *                 inserted.
390       *  @param  last  Iterator pointing to the end of the range.
391       *
392       *  Complexity similar to that of the range constructor.
393       */
394      template <typename _InputIterator>
395        void
396        insert(_InputIterator __first, _InputIterator __last)
397        { _M_t.insert_unique(__first, __last); }
398
399      /**
400       *  @brief Erases an element from a %map.
401       *  @param  position  An iterator pointing to the element to be erased.
402       *
403       *  This function erases an element, pointed to by the given iterator,
404       *  from a %map.  Note that this function only erases the element, and
405       *  that if the element is itself a pointer, the pointed-to memory is not
406       *  touched in any way.  Managing the pointer is the user's responsibilty.
407       */
408      void
409      erase(iterator __position)
410      { _M_t.erase(__position); }
411
412      /**
413       *  @brief Erases elements according to the provided key.
414       *  @param  x  Key of element to be erased.
415       *  @return  The number of elements erased.
416       *
417       *  This function erases all the elements located by the given key from
418       *  a %map.
419       *  Note that this function only erases the element, and that if
420       *  the element is itself a pointer, the pointed-to memory is not touched
421       *  in any way.  Managing the pointer is the user's responsibilty.
422       */
423      size_type
424      erase(const key_type& __x)
425      { return _M_t.erase(__x); }
426
427      /**
428       *  @brief Erases a [first,last) range of elements from a %map.
429       *  @param  first  Iterator pointing to the start of the range to be
430       *                 erased.
431       *  @param  last  Iterator pointing to the end of the range to be erased.
432       *
433       *  This function erases a sequence of elements from a %map.
434       *  Note that this function only erases the element, and that if
435       *  the element is itself a pointer, the pointed-to memory is not touched
436       *  in any way.  Managing the pointer is the user's responsibilty.
437       */
438      void
439      erase(iterator __first, iterator __last)
440      { _M_t.erase(__first, __last); }
441
442      /**
443       *  @brief  Swaps data with another %map.
444       *  @param  x  A %map of the same element and allocator types.
445       *
446       *  This exchanges the elements between two maps in constant time.
447       *  (It is only swapping a pointer, an integer, and an instance of
448       *  the @c Compare type (which itself is often stateless and empty), so it
449       *  should be quite fast.)
450       *  Note that the global std::swap() function is specialized such that
451       *  std::swap(m1,m2) will feed to this function.
452       */
453      void
454      swap(map& __x)
455      { _M_t.swap(__x._M_t); }
456
457      /**
458       *  Erases all elements in a %map.  Note that this function only erases
459       *  the elements, and that if the elements themselves are pointers, the
460       *  pointed-to memory is not touched in any way.  Managing the pointer is
461       *  the user's responsibilty.
462       */
463      void
464      clear()
465      { _M_t.clear(); }
466
467      // observers
468      /**
469       *  Returns the key comparison object out of which the %map was
470       *  constructed.
471       */
472      key_compare
473      key_comp() const
474      { return _M_t.key_comp(); }
475
476      /**
477       *  Returns a value comparison object, built from the key comparison
478       *  object out of which the %map was constructed.
479       */
480      value_compare
481      value_comp() const
482      { return value_compare(_M_t.key_comp()); }
483
484      // [23.3.1.3] map operations
485      /**
486       *  @brief Tries to locate an element in a %map.
487       *  @param  x  Key of (key, value) %pair to be located.
488       *  @return  Iterator pointing to sought-after element, or end() if not
489       *           found.
490       *
491       *  This function takes a key and tries to locate the element with which
492       *  the key matches.  If successful the function returns an iterator
493       *  pointing to the sought after %pair.  If unsuccessful it returns the
494       *  past-the-end ( @c end() ) iterator.
495       */
496      iterator
497      find(const key_type& __x)
498      { return _M_t.find(__x); }
499
500      /**
501       *  @brief Tries to locate an element in a %map.
502       *  @param  x  Key of (key, value) %pair to be located.
503       *  @return  Read-only (constant) iterator pointing to sought-after
504       *           element, or end() if not found.
505       *
506       *  This function takes a key and tries to locate the element with which
507       *  the key matches.  If successful the function returns a constant
508       *  iterator pointing to the sought after %pair. If unsuccessful it
509       *  returns the past-the-end ( @c end() ) iterator.
510       */
511      const_iterator
512      find(const key_type& __x) const
513      { return _M_t.find(__x); }
514
515      /**
516       *  @brief  Finds the number of elements with given key.
517       *  @param  x  Key of (key, value) pairs to be located.
518       *  @return  Number of elements with specified key.
519       *
520       *  This function only makes sense for multimaps; for map the result will
521       *  either be 0 (not present) or 1 (present).
522       */
523      size_type
524      count(const key_type& __x) const
525      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
526
527      /**
528       *  @brief Finds the beginning of a subsequence matching given key.
529       *  @param  x  Key of (key, value) pair to be located.
530       *  @return  Iterator pointing to first element equal to or greater
531       *           than key, or end().
532       *
533       *  This function returns the first element of a subsequence of elements
534       *  that matches the given key.  If unsuccessful it returns an iterator
535       *  pointing to the first element that has a greater value than given key
536       *  or end() if no such element exists.
537       */
538      iterator
539      lower_bound(const key_type& __x)
540      { return _M_t.lower_bound(__x); }
541
542      /**
543       *  @brief Finds the beginning of a subsequence matching given key.
544       *  @param  x  Key of (key, value) pair to be located.
545       *  @return  Read-only (constant) iterator pointing to first element
546       *           equal to or greater than key, or end().
547       *
548       *  This function returns the first element of a subsequence of elements
549       *  that matches the given key.  If unsuccessful it returns an iterator
550       *  pointing to the first element that has a greater value than given key
551       *  or end() if no such element exists.
552       */
553      const_iterator
554      lower_bound(const key_type& __x) const
555      { return _M_t.lower_bound(__x); }
556
557      /**
558       *  @brief Finds the end of a subsequence matching given key.
559       *  @param  x  Key of (key, value) pair to be located.
560       *  @return Iterator pointing to the first element
561       *          greater than key, or end().
562       */
563      iterator
564      upper_bound(const key_type& __x)
565      { return _M_t.upper_bound(__x); }
566
567      /**
568       *  @brief Finds the end of a subsequence matching given key.
569       *  @param  x  Key of (key, value) pair to be located.
570       *  @return  Read-only (constant) iterator pointing to first iterator
571       *           greater than key, or end().
572       */
573      const_iterator
574      upper_bound(const key_type& __x) const
575      { return _M_t.upper_bound(__x); }
576
577      /**
578       *  @brief Finds a subsequence matching given key.
579       *  @param  x  Key of (key, value) pairs to be located.
580       *  @return  Pair of iterators that possibly points to the subsequence
581       *           matching given key.
582       *
583       *  This function is equivalent to
584       *  @code
585       *    std::make_pair(c.lower_bound(val),
586       *                   c.upper_bound(val))
587       *  @endcode
588       *  (but is faster than making the calls separately).
589       *
590       *  This function probably only makes sense for multimaps.
591       */
592      pair<iterator,iterator>
593      equal_range(const key_type& __x)
594      { return _M_t.equal_range(__x); }
595
596      /**
597       *  @brief Finds a subsequence matching given key.
598       *  @param  x  Key of (key, value) pairs to be located.
599       *  @return  Pair of read-only (constant) iterators that possibly points
600       *           to the subsequence matching given key.
601       *
602       *  This function is equivalent to
603       *  @code
604       *    std::make_pair(c.lower_bound(val),
605       *                   c.upper_bound(val))
606       *  @endcode
607       *  (but is faster than making the calls separately).
608       *
609       *  This function probably only makes sense for multimaps.
610       */
611      pair<const_iterator,const_iterator>
612      equal_range(const key_type& __x) const
613      { return _M_t.equal_range(__x); }
614
615      template <typename _K1, typename _T1, typename _C1, typename _A1>
616        friend bool
617        operator== (const map<_K1,_T1,_C1,_A1>&,
618                    const map<_K1,_T1,_C1,_A1>&);
619
620      template <typename _K1, typename _T1, typename _C1, typename _A1>
621        friend bool
622        operator< (const map<_K1,_T1,_C1,_A1>&,
623                   const map<_K1,_T1,_C1,_A1>&);
624    };
625
626  /**
627   *  @brief  Map equality comparison.
628   *  @param  x  A %map.
629   *  @param  y  A %map of the same type as @a x.
630   *  @return  True iff the size and elements of the maps are equal.
631   *
632   *  This is an equivalence relation.  It is linear in the size of the
633   *  maps.  Maps are considered equivalent if their sizes are equal,
634   *  and if corresponding elements compare equal.
635  */
636  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
637    inline bool
638    operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
639               const map<_Key,_Tp,_Compare,_Alloc>& __y)
640    { return __x._M_t == __y._M_t; }
641
642  /**
643   *  @brief  Map ordering relation.
644   *  @param  x  A %map.
645   *  @param  y  A %map of the same type as @a x.
646   *  @return  True iff @a x is lexicographically less than @a y.
647   *
648   *  This is a total ordering relation.  It is linear in the size of the
649   *  maps.  The elements must be comparable with @c <.
650   *
651   *  See std::lexicographical_compare() for how the determination is made.
652  */
653  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
654    inline bool
655    operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
656              const map<_Key,_Tp,_Compare,_Alloc>& __y)
657    { return __x._M_t < __y._M_t; }
658
659  /// Based on operator==
660  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
661    inline bool
662    operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
663               const map<_Key,_Tp,_Compare,_Alloc>& __y)
664    { return !(__x == __y); }
665
666  /// Based on operator<
667  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
668    inline bool
669    operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
670              const map<_Key,_Tp,_Compare,_Alloc>& __y)
671    { return __y < __x; }
672
673  /// Based on operator<
674  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
675    inline bool
676    operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
677               const map<_Key,_Tp,_Compare,_Alloc>& __y)
678    { return !(__y < __x); }
679
680  /// Based on operator<
681  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
682    inline bool
683    operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
684               const map<_Key,_Tp,_Compare,_Alloc>& __y)
685    { return !(__x < __y); }
686
687  /// See std::map::swap().
688  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
689    inline void
690    swap(map<_Key,_Tp,_Compare,_Alloc>& __x, map<_Key,_Tp,_Compare,_Alloc>& __y)
691    { __x.swap(__y); }
692} // namespace std
693
694#endif /* _MAP_H */
Note: See TracBrowser for help on using the repository browser.