source: svn/trunk/newcon3bcm2_21bu/toolchain/mips-linux-uclibc/include/asm/bitops.h

Last change on this file was 2, checked in by jglee, 11 years ago

first commit

  • Property svn:executable set to *
File size: 10.8 KB
RevLine 
[2]1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 1994 - 1997, 1999, 2000  Ralf Baechle (ralf@gnu.org)
7 * Copyright (c) 1999, 2000  Silicon Graphics, Inc.
8 */
9
10/* non-atomic version which could be used in userspace (but shouldn't anyway) */
11
12#ifndef _ASM_BITOPS_H
13#define _ASM_BITOPS_H
14
15#include <linux/types.h>
16#include <asm/byteorder.h>              /* sigh ... */
17
18#if (_MIPS_SZLONG == 32)
19#define SZLONG_LOG 5
20#define SZLONG_MASK 31UL
21#define __LL    "ll"
22#define __SC    "sc"
23#define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x))
24#elif (_MIPS_SZLONG == 64)
25#define SZLONG_LOG 6
26#define SZLONG_MASK 63UL
27#define __LL    "lld"
28#define __SC    "scd"
29#define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x))
30#endif
31
32/*
33 * set_bit - Atomically set a bit in memory
34 * @nr: the bit to set
35 * @addr: the address to start counting from
36 *
37 * This function is atomic and may not be reordered.  See __set_bit()
38 * if you do not require the atomic guarantees.
39 * Note that @nr may be almost arbitrarily large; this function is not
40 * restricted to acting on a single-word quantity.
41 */
42static inline void set_bit(unsigned long nr, volatile unsigned long * addr)
43{
44        volatile unsigned long *a = addr;
45        unsigned long mask;
46
47        a += nr >> SZLONG_LOG;
48        mask = 1 << (nr & SZLONG_MASK);
49        *a |= mask;
50}
51
52/*
53 * __set_bit - Set a bit in memory
54 * @nr: the bit to set
55 * @addr: the address to start counting from
56 *
57 * Unlike set_bit(), this function is non-atomic and may be reordered.
58 * If it's called on the same region of memory simultaneously, the effect
59 * may be that only one operation succeeds.
60 */
61static inline void __set_bit(unsigned long nr, volatile unsigned long * addr)
62{
63        volatile unsigned long *a = addr;
64        unsigned long mask;
65
66        a += nr >> SZLONG_LOG;
67        mask = 1 << (nr & SZLONG_MASK);
68        *a |= mask;
69}
70
71/*
72 * clear_bit - Clears a bit in memory
73 * @nr: Bit to clear
74 * @addr: Address to start counting from
75 *
76 * clear_bit() is atomic and may not be reordered.  However, it does
77 * not contain a memory barrier, so if it is used for locking purposes,
78 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
79 * in order to ensure changes are visible on other processors.
80 */
81static inline void clear_bit(unsigned long nr, volatile unsigned long * addr)
82{
83        volatile unsigned long *a = addr;
84        unsigned long mask;
85
86        a += nr >> SZLONG_LOG;
87        mask = 1 << (nr & SZLONG_MASK);
88        *a &= ~mask;
89}
90
91static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr)
92{
93        volatile unsigned long *a = addr;
94        unsigned long mask;
95
96        a += nr >> SZLONG_LOG;
97        mask = 1 << (nr & SZLONG_MASK);
98        *a &= ~mask;
99}
100
101/*
102 * change_bit - Toggle a bit in memory
103 * @nr: Bit to change
104 * @addr: Address to start counting from
105 *
106 * change_bit() is atomic and may not be reordered.
107 * Note that @nr may be almost arbitrarily large; this function is not
108 * restricted to acting on a single-word quantity.
109 */
110static inline void change_bit(unsigned long nr, volatile unsigned long * addr)
111{
112        volatile unsigned long *a = addr;
113        unsigned long mask;
114
115        a += nr >> SZLONG_LOG;
116        mask = 1 << (nr & SZLONG_MASK);
117        *a ^= mask;
118}
119
120/*
121 * __change_bit - Toggle a bit in memory
122 * @nr: the bit to change
123 * @addr: the address to start counting from
124 *
125 * Unlike change_bit(), this function is non-atomic and may be reordered.
126 * If it's called on the same region of memory simultaneously, the effect
127 * may be that only one operation succeeds.
128 */
129static inline void __change_bit(unsigned long nr, volatile unsigned long * addr)
130{
131        unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG);
132
133        *m ^= 1UL << (nr & SZLONG_MASK);
134}
135
136/*
137 * test_and_set_bit - Set a bit and return its old value
138 * @nr: Bit to set
139 * @addr: Address to count from
140 *
141 * This operation is atomic and cannot be reordered.
142 * It also implies a memory barrier.
143 */
144static inline int test_and_set_bit(unsigned long nr,
145        volatile unsigned long * addr)
146{
147        volatile unsigned long *a = addr;
148        unsigned long mask;
149        int retval;
150
151        a += nr >> SZLONG_LOG;
152        mask = 1 << (nr & SZLONG_MASK);
153        retval = (mask & *a) != 0;
154        *a |= mask;
155
156        return retval;
157}
158
159/*
160 * __test_and_set_bit - Set a bit and return its old value
161 * @nr: Bit to set
162 * @addr: Address to count from
163 *
164 * This operation is non-atomic and can be reordered.
165 * If two examples of this operation race, one can appear to succeed
166 * but actually fail.  You must protect multiple accesses with a lock.
167 */
168static inline int __test_and_set_bit(unsigned long nr,
169        volatile unsigned long *addr)
170{
171        volatile unsigned long *a = addr;
172        unsigned long mask;
173        int retval;
174
175        a += nr >> SZLONG_LOG;
176        mask = 1 << (nr & SZLONG_MASK);
177        retval = (mask & *a) != 0;
178        *a |= mask;
179
180        return retval;
181}
182
183/*
184 * test_and_clear_bit - Clear a bit and return its old value
185 * @nr: Bit to clear
186 * @addr: Address to count from
187 *
188 * This operation is atomic and cannot be reordered.
189 * It also implies a memory barrier.
190 */
191static inline int test_and_clear_bit(unsigned long nr,
192        volatile unsigned long * addr)
193{
194        volatile unsigned long *a = addr;
195        unsigned long mask;
196        int retval;
197
198        a += nr >> SZLONG_LOG;
199        mask = 1 << (nr & SZLONG_MASK);
200        retval = (mask & *a) != 0;
201        *a &= ~mask;
202
203        return retval;
204}
205
206/*
207 * __test_and_clear_bit - Clear a bit and return its old value
208 * @nr: Bit to clear
209 * @addr: Address to count from
210 *
211 * This operation is non-atomic and can be reordered.
212 * If two examples of this operation race, one can appear to succeed
213 * but actually fail.  You must protect multiple accesses with a lock.
214 */
215static inline int __test_and_clear_bit(unsigned long nr,
216        volatile unsigned long * addr)
217{
218        volatile unsigned long *a = addr;
219        unsigned long mask;
220        int retval;
221
222        a += (nr >> SZLONG_LOG);
223        mask = 1UL << (nr & SZLONG_MASK);
224        retval = ((mask & *a) != 0);
225        *a &= ~mask;
226
227        return retval;
228}
229
230/*
231 * test_and_change_bit - Change a bit and return its old value
232 * @nr: Bit to change
233 * @addr: Address to count from
234 *
235 * This operation is atomic and cannot be reordered.
236 * It also implies a memory barrier.
237 */
238static inline int test_and_change_bit(unsigned long nr,
239        volatile unsigned long * addr)
240{
241        volatile unsigned long *a = addr;
242        unsigned long mask, retval;
243
244        a += nr >> SZLONG_LOG;
245        mask = 1 << (nr & SZLONG_MASK);
246        retval = (mask & *a) != 0;
247        *a ^= mask;
248
249        return retval;
250}
251
252/*
253 * __test_and_change_bit - Change a bit and return its old value
254 * @nr: Bit to change
255 * @addr: Address to count from
256 *
257 * This operation is non-atomic and can be reordered.
258 * If two examples of this operation race, one can appear to succeed
259 * but actually fail.  You must protect multiple accesses with a lock.
260 */
261static inline int __test_and_change_bit(unsigned long nr,
262        volatile unsigned long * addr)
263{
264        volatile unsigned long *a = addr;
265        unsigned long mask;
266        int retval;
267
268        a += (nr >> SZLONG_LOG);
269        mask = 1 << (nr & SZLONG_MASK);
270        retval = (mask & *a) != 0;
271        *a ^= mask;
272
273        return retval;
274}
275
276/*
277 * test_bit - Determine whether a bit is set
278 * @nr: bit number to test
279 * @addr: Address to start counting from
280 */
281static inline int test_bit(unsigned long nr, const volatile unsigned long *addr)
282{
283        return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK));
284}
285
286/*
287 * ffz - find first zero in word.
288 * @word: The word to search
289 *
290 * Undefined if no zero exists, so code should check against ~0UL first.
291 */
292static inline unsigned long ffz(unsigned long word)
293{
294        int b = 0, s;
295
296        word = ~word;
297#if (_MIPS_SZLONG == 32)
298        s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s;
299        s =  8; if (word << 24 != 0) s = 0; b += s; word >>= s;
300        s =  4; if (word << 28 != 0) s = 0; b += s; word >>= s;
301        s =  2; if (word << 30 != 0) s = 0; b += s; word >>= s;
302        s =  1; if (word << 31 != 0) s = 0; b += s;
303#endif
304#if (_MIPS_SZLONG == 64)
305        s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s;
306        s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s;
307        s =  8; if (word << 56 != 0) s = 0; b += s; word >>= s;
308        s =  4; if (word << 60 != 0) s = 0; b += s; word >>= s;
309        s =  2; if (word << 62 != 0) s = 0; b += s; word >>= s;
310        s =  1; if (word << 63 != 0) s = 0; b += s;
311#endif
312
313        return b;
314}
315
316/*
317 * __ffs - find first bit in word.
318 * @word: The word to search
319 *
320 * Undefined if no bit exists, so code should check against 0 first.
321 */
322static inline unsigned long __ffs(unsigned long word)
323{
324        return ffz(~word);
325}
326
327/*
328 * fls: find last bit set.
329 */
330
331#define fls(x) generic_fls(x)
332
333/*
334 * find_next_zero_bit - find the first zero bit in a memory region
335 * @addr: The address to base the search on
336 * @offset: The bitnumber to start searching at
337 * @size: The maximum size to search
338 */
339static inline unsigned long find_next_zero_bit(const unsigned long *addr,
340        unsigned long size, unsigned long offset)
341{
342        const unsigned long *p = addr + (offset >> SZLONG_LOG);
343        unsigned long result = offset & ~SZLONG_MASK;
344        unsigned long tmp;
345
346        if (offset >= size)
347                return size;
348        size -= result;
349        offset &= SZLONG_MASK;
350        if (offset) {
351                tmp = *(p++);
352                tmp |= ~0UL >> (_MIPS_SZLONG-offset);
353                if (size < _MIPS_SZLONG)
354                        goto found_first;
355                if (~tmp)
356                        goto found_middle;
357                size -= _MIPS_SZLONG;
358                result += _MIPS_SZLONG;
359        }
360        while (size & ~SZLONG_MASK) {
361                if (~(tmp = *(p++)))
362                        goto found_middle;
363                result += _MIPS_SZLONG;
364                size -= _MIPS_SZLONG;
365        }
366        if (!size)
367                return result;
368        tmp = *p;
369
370found_first:
371        tmp |= ~0UL << size;
372        if (tmp == ~0UL)                /* Are any bits zero? */
373                return result + size;   /* Nope. */
374found_middle:
375        return result + ffz(tmp);
376}
377
378#define find_first_zero_bit(addr, size) \
379        find_next_zero_bit((addr), (size), 0)
380
381/*
382 * find_next_bit - find the next set bit in a memory region
383 * @addr: The address to base the search on
384 * @offset: The bitnumber to start searching at
385 * @size: The maximum size to search
386 */
387static inline unsigned long find_next_bit(const unsigned long *addr,
388        unsigned long size, unsigned long offset)
389{
390        const unsigned long *p = addr + (offset >> SZLONG_LOG);
391        unsigned long result = offset & ~SZLONG_MASK;
392        unsigned long tmp;
393
394        if (offset >= size)
395                return size;
396        size -= result;
397        offset &= SZLONG_MASK;
398        if (offset) {
399                tmp = *(p++);
400                tmp &= ~0UL << offset;
401                if (size < _MIPS_SZLONG)
402                        goto found_first;
403                if (tmp)
404                        goto found_middle;
405                size -= _MIPS_SZLONG;
406                result += _MIPS_SZLONG;
407        }
408        while (size & ~SZLONG_MASK) {
409                if ((tmp = *(p++)))
410                        goto found_middle;
411                result += _MIPS_SZLONG;
412                size -= _MIPS_SZLONG;
413        }
414        if (!size)
415                return result;
416        tmp = *p;
417
418found_first:
419        tmp &= ~0UL >> (_MIPS_SZLONG - size);
420        if (tmp == 0UL)                 /* Are any bits set? */
421                return result + size;   /* Nope. */
422found_middle:
423        return result + __ffs(tmp);
424}
425
426/*
427 * find_first_bit - find the first set bit in a memory region
428 * @addr: The address to start the search at
429 * @size: The maximum size to search
430 *
431 * Returns the bit-number of the first set bit, not the number of the byte
432 * containing a bit.
433 */
434#define find_first_bit(addr, size) \
435        find_next_bit((addr), (size), 0)
436
437#endif /* _ASM_BITOPS_H */
Note: See TracBrowser for help on using the repository browser.