source: svn/trunk/newcon3bcm2_21bu/toolchain/include/c++/3.4.2/bits/stl_set.h

Last change on this file was 2, checked in by phkim, 11 years ago

1.phkim

  1. revision copy newcon3sk r27
  • Property svn:executable set to *
File size: 20.9 KB
Line 
1// Set implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_set.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _SET_H
62#define _SET_H 1
63
64#include <bits/concept_check.h>
65
66namespace _GLIBCXX_STD
67{
68  // Forward declarations of operators < and ==, needed for friend declaration.
69  template<class _Key, class _Compare = less<_Key>,
70           class _Alloc = allocator<_Key> >
71    class set;
72
73  template<class _Key, class _Compare, class _Alloc>
74    inline bool
75    operator==(const set<_Key,_Compare,_Alloc>& __x,
76               const set<_Key,_Compare,_Alloc>& __y);
77
78  template<class _Key, class _Compare, class _Alloc>
79    inline bool
80    operator<(const set<_Key,_Compare,_Alloc>& __x,
81              const set<_Key,_Compare,_Alloc>& __y);
82
83  /**
84   *  @brief A standard container made up of unique keys, which can be
85   *  retrieved in logarithmic time.
86   *
87   *  @ingroup Containers
88   *  @ingroup Assoc_containers
89   *
90   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
91   *  <a href="tables.html#66">reversible container</a>, and an
92   *  <a href="tables.html#69">associative container</a> (using unique keys).
93   *
94   *  Sets support bidirectional iterators.
95   *
96   *  @param  Key  Type of key objects.
97   *  @param  Compare  Comparison function object type, defaults to less<Key>.
98   *  @param  Alloc  Allocator type, defaults to allocator<Key>.
99   *
100   *  @if maint
101   *  The private tree data is declared exactly the same way for set and
102   *  multiset; the distinction is made entirely in how the tree functions are
103   *  called (*_unique versus *_equal, same as the standard).
104   *  @endif
105  */
106  template<class _Key, class _Compare, class _Alloc>
107    class set
108    {
109      // concept requirements
110      __glibcxx_class_requires(_Key, _SGIAssignableConcept)
111      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
112                                _BinaryFunctionConcept)
113
114    public:
115      // typedefs:
116      //@{
117      /// Public typedefs.
118      typedef _Key     key_type;
119      typedef _Key     value_type;
120      typedef _Compare key_compare;
121      typedef _Compare value_compare;
122      //@}
123
124    private:
125      typedef _Rb_tree<key_type, value_type,
126                       _Identity<value_type>, key_compare, _Alloc> _Rep_type;
127      _Rep_type _M_t;  // red-black tree representing set
128    public:
129      //@{
130      ///  Iterator-related typedefs.
131      typedef typename _Alloc::pointer pointer;
132      typedef typename _Alloc::const_pointer const_pointer;
133      typedef typename _Alloc::reference reference;
134      typedef typename _Alloc::const_reference const_reference;
135      // _GLIBCXX_RESOLVE_LIB_DEFECTS
136      // DR 103. set::iterator is required to be modifiable,
137      // but this allows modification of keys.
138      typedef typename _Rep_type::const_iterator iterator;
139      typedef typename _Rep_type::const_iterator const_iterator;
140      typedef typename _Rep_type::const_reverse_iterator reverse_iterator;
141      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
142      typedef typename _Rep_type::size_type size_type;
143      typedef typename _Rep_type::difference_type difference_type;
144      typedef typename _Rep_type::allocator_type allocator_type;
145      //@}
146
147      // allocation/deallocation
148      ///  Default constructor creates no elements.
149      set()
150      : _M_t(_Compare(), allocator_type()) {}
151
152      /**
153       *  @brief  Default constructor creates no elements.
154       *
155       *  @param  comp  Comparator to use.
156       *  @param  a  Allocator to use.
157       */
158      explicit set(const _Compare& __comp,
159                   const allocator_type& __a = allocator_type())
160      : _M_t(__comp, __a) {}
161
162      /**
163       *  @brief  Builds a %set from a range.
164       *  @param  first  An input iterator.
165       *  @param  last  An input iterator.
166       *
167       *  Create a %set consisting of copies of the elements from [first,last).
168       *  This is linear in N if the range is already sorted, and NlogN
169       *  otherwise (where N is distance(first,last)).
170       */
171      template<class _InputIterator>
172        set(_InputIterator __first, _InputIterator __last)
173        : _M_t(_Compare(), allocator_type())
174        { _M_t.insert_unique(__first, __last); }
175
176      /**
177       *  @brief  Builds a %set from a range.
178       *  @param  first  An input iterator.
179       *  @param  last  An input iterator.
180       *  @param  comp  A comparison functor.
181       *  @param  a  An allocator object.
182       *
183       *  Create a %set consisting of copies of the elements from [first,last).
184       *  This is linear in N if the range is already sorted, and NlogN
185       *  otherwise (where N is distance(first,last)).
186       */
187      template<class _InputIterator>
188        set(_InputIterator __first, _InputIterator __last,
189            const _Compare& __comp,
190            const allocator_type& __a = allocator_type())
191        : _M_t(__comp, __a)
192        { _M_t.insert_unique(__first, __last); }
193
194      /**
195       *  @brief  Set copy constructor.
196       *  @param  x  A %set of identical element and allocator types.
197       *
198       *  The newly-created %set uses a copy of the allocation object used
199       *  by @a x.
200       */
201      set(const set<_Key,_Compare,_Alloc>& __x)
202      : _M_t(__x._M_t) { }
203
204      /**
205       *  @brief  Set assignment operator.
206       *  @param  x  A %set of identical element and allocator types.
207       *
208       *  All the elements of @a x are copied, but unlike the copy constructor,
209       *  the allocator object is not copied.
210       */
211      set<_Key,_Compare,_Alloc>&
212      operator=(const set<_Key, _Compare, _Alloc>& __x)
213      {
214        _M_t = __x._M_t;
215        return *this;
216      }
217
218      // accessors:
219
220      ///  Returns the comparison object with which the %set was constructed.
221      key_compare
222      key_comp() const
223      { return _M_t.key_comp(); }
224      ///  Returns the comparison object with which the %set was constructed.
225      value_compare
226      value_comp() const
227      { return _M_t.key_comp(); }
228      ///  Returns the allocator object with which the %set was constructed.
229      allocator_type
230      get_allocator() const
231      { return _M_t.get_allocator(); }
232
233      /**
234       *  Returns a read/write iterator that points to the first element in the
235       *  %set.  Iteration is done in ascending order according to the keys.
236       */
237      iterator
238      begin() const
239      { return _M_t.begin(); }
240
241      /**
242       *  Returns a read/write iterator that points one past the last element in
243       *  the %set.  Iteration is done in ascending order according to the keys.
244       */
245      iterator
246      end() const
247      { return _M_t.end(); }
248
249      /**
250       *  Returns a read/write reverse iterator that points to the last element
251       *  in the %set.  Iteration is done in descending order according to the
252       *  keys.
253       */
254      reverse_iterator
255      rbegin() const
256      { return _M_t.rbegin(); }
257
258      /**
259       *  Returns a read-only (constant) reverse iterator that points to the
260       *  last pair in the %map.  Iteration is done in descending order
261       *  according to the keys.
262       */
263      reverse_iterator
264      rend() const
265      { return _M_t.rend(); }
266
267      ///  Returns true if the %set is empty.
268      bool
269      empty() const
270      { return _M_t.empty(); }
271
272      ///  Returns the size of the %set.
273      size_type
274      size() const
275      { return _M_t.size(); }
276
277      ///  Returns the maximum size of the %set.
278      size_type
279      max_size() const
280      { return _M_t.max_size(); }
281
282      /**
283       *  @brief  Swaps data with another %set.
284       *  @param  x  A %set of the same element and allocator types.
285       *
286       *  This exchanges the elements between two sets in constant time.
287       *  (It is only swapping a pointer, an integer, and an instance of
288       *  the @c Compare type (which itself is often stateless and empty), so it
289       *  should be quite fast.)
290       *  Note that the global std::swap() function is specialized such that
291       *  std::swap(s1,s2) will feed to this function.
292       */
293      void
294      swap(set<_Key,_Compare,_Alloc>& __x)
295      { _M_t.swap(__x._M_t); }
296
297      // insert/erase
298      /**
299       *  @brief Attempts to insert an element into the %set.
300       *  @param  x  Element to be inserted.
301       *  @return  A pair, of which the first element is an iterator that points
302       *           to the possibly inserted element, and the second is a bool
303       *           that is true if the element was actually inserted.
304       *
305       *  This function attempts to insert an element into the %set.  A %set
306       *  relies on unique keys and thus an element is only inserted if it is
307       *  not already present in the %set.
308       *
309       *  Insertion requires logarithmic time.
310       */
311      pair<iterator,bool>
312      insert(const value_type& __x)
313      {
314        pair<typename _Rep_type::iterator, bool> __p = _M_t.insert_unique(__x);
315        return pair<iterator, bool>(__p.first, __p.second);
316      }
317
318      /**
319       *  @brief Attempts to insert an element into the %set.
320       *  @param  position  An iterator that serves as a hint as to where the
321       *                    element should be inserted.
322       *  @param  x  Element to be inserted.
323       *  @return  An iterator that points to the element with key of @a x (may
324       *           or may not be the element passed in).
325       *
326       *  This function is not concerned about whether the insertion took place,
327       *  and thus does not return a boolean like the single-argument insert()
328       *  does.  Note that the first parameter is only a hint and can
329       *  potentially improve the performance of the insertion process.  A bad
330       *  hint would cause no gains in efficiency.
331       *
332       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
333       *  for more on "hinting".
334       *
335       *  Insertion requires logarithmic time (if the hint is not taken).
336       */
337      iterator
338      insert(iterator __position, const value_type& __x)
339      {
340        typedef typename _Rep_type::iterator _Rep_iterator;
341        return _M_t.insert_unique((_Rep_iterator&)__position, __x);
342      }
343
344      /**
345       *  @brief A template function that attemps to insert a range of elements.
346       *  @param  first  Iterator pointing to the start of the range to be
347       *                 inserted.
348       *  @param  last  Iterator pointing to the end of the range.
349       *
350       *  Complexity similar to that of the range constructor.
351       */
352      template<class _InputIterator>
353      void
354      insert(_InputIterator __first, _InputIterator __last)
355      { _M_t.insert_unique(__first, __last); }
356
357      /**
358       *  @brief Erases an element from a %set.
359       *  @param  position  An iterator pointing to the element to be erased.
360       *
361       *  This function erases an element, pointed to by the given iterator,
362       *  from a %set.  Note that this function only erases the element, and
363       *  that if the element is itself a pointer, the pointed-to memory is not
364       *  touched in any way.  Managing the pointer is the user's responsibilty.
365       */
366      void
367      erase(iterator __position)
368      {
369        typedef typename _Rep_type::iterator _Rep_iterator;
370        _M_t.erase((_Rep_iterator&)__position);
371      }
372
373      /**
374       *  @brief Erases elements according to the provided key.
375       *  @param  x  Key of element to be erased.
376       *  @return  The number of elements erased.
377       *
378       *  This function erases all the elements located by the given key from
379       *  a %set.
380       *  Note that this function only erases the element, and that if
381       *  the element is itself a pointer, the pointed-to memory is not touched
382       *  in any way.  Managing the pointer is the user's responsibilty.
383       */
384      size_type
385      erase(const key_type& __x) { return _M_t.erase(__x); }
386
387      /**
388       *  @brief Erases a [first,last) range of elements from a %set.
389       *  @param  first  Iterator pointing to the start of the range to be
390       *                 erased.
391       *  @param  last  Iterator pointing to the end of the range to be erased.
392       *
393       *  This function erases a sequence of elements from a %set.
394       *  Note that this function only erases the element, and that if
395       *  the element is itself a pointer, the pointed-to memory is not touched
396       *  in any way.  Managing the pointer is the user's responsibilty.
397       */
398      void
399      erase(iterator __first, iterator __last)
400      {
401        typedef typename _Rep_type::iterator _Rep_iterator;
402        _M_t.erase((_Rep_iterator&)__first, (_Rep_iterator&)__last);
403      }
404
405      /**
406       *  Erases all elements in a %set.  Note that this function only erases
407       *  the elements, and that if the elements themselves are pointers, the
408       *  pointed-to memory is not touched in any way.  Managing the pointer is
409       *  the user's responsibilty.
410       */
411      void
412      clear()
413      { _M_t.clear(); }
414
415      // set operations:
416
417      /**
418       *  @brief  Finds the number of elements.
419       *  @param  x  Element to located.
420       *  @return  Number of elements with specified key.
421       *
422       *  This function only makes sense for multisets; for set the result will
423       *  either be 0 (not present) or 1 (present).
424       */
425      size_type
426      count(const key_type& __x) const
427      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
428
429      // _GLIBCXX_RESOLVE_LIB_DEFECTS
430      // 214.  set::find() missing const overload
431      //@{
432      /**
433       *  @brief Tries to locate an element in a %set.
434       *  @param  x  Element to be located.
435       *  @return  Iterator pointing to sought-after element, or end() if not
436       *           found.
437       *
438       *  This function takes a key and tries to locate the element with which
439       *  the key matches.  If successful the function returns an iterator
440       *  pointing to the sought after element.  If unsuccessful it returns the
441       *  past-the-end ( @c end() ) iterator.
442       */
443      iterator
444      find(const key_type& __x)
445      { return _M_t.find(__x); }
446
447      const_iterator
448      find(const key_type& __x) const
449      { return _M_t.find(__x); }
450      //@}
451
452      //@{
453      /**
454       *  @brief Finds the beginning of a subsequence matching given key.
455       *  @param  x  Key to be located.
456       *  @return  Iterator pointing to first element equal to or greater
457       *           than key, or end().
458       *
459       *  This function returns the first element of a subsequence of elements
460       *  that matches the given key.  If unsuccessful it returns an iterator
461       *  pointing to the first element that has a greater value than given key
462       *  or end() if no such element exists.
463       */
464      iterator
465      lower_bound(const key_type& __x)
466      { return _M_t.lower_bound(__x); }
467
468      const_iterator
469      lower_bound(const key_type& __x) const
470      { return _M_t.lower_bound(__x); }
471      //@}
472
473      //@{
474      /**
475       *  @brief Finds the end of a subsequence matching given key.
476       *  @param  x  Key to be located.
477       *  @return Iterator pointing to the first element
478       *          greater than key, or end().
479       */
480      iterator
481      upper_bound(const key_type& __x)
482      { return _M_t.upper_bound(__x); }
483
484      const_iterator
485      upper_bound(const key_type& __x) const
486      { return _M_t.upper_bound(__x); }
487      //@}
488
489      //@{
490      /**
491       *  @brief Finds a subsequence matching given key.
492       *  @param  x  Key to be located.
493       *  @return  Pair of iterators that possibly points to the subsequence
494       *           matching given key.
495       *
496       *  This function is equivalent to
497       *  @code
498       *    std::make_pair(c.lower_bound(val),
499       *                   c.upper_bound(val))
500       *  @endcode
501       *  (but is faster than making the calls separately).
502       *
503       *  This function probably only makes sense for multisets.
504       */
505      pair<iterator,iterator>
506      equal_range(const key_type& __x)
507      { return _M_t.equal_range(__x); }
508
509      pair<const_iterator,const_iterator>
510      equal_range(const key_type& __x) const
511      { return _M_t.equal_range(__x); }
512      //@}
513
514      template<class _K1, class _C1, class _A1>
515        friend bool
516        operator== (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
517
518      template<class _K1, class _C1, class _A1>
519        friend bool
520        operator< (const set<_K1,_C1,_A1>&, const set<_K1,_C1,_A1>&);
521    };
522
523
524  /**
525   *  @brief  Set equality comparison.
526   *  @param  x  A %set.
527   *  @param  y  A %set of the same type as @a x.
528   *  @return  True iff the size and elements of the sets are equal.
529   *
530   *  This is an equivalence relation.  It is linear in the size of the sets.
531   *  Sets are considered equivalent if their sizes are equal, and if
532   *  corresponding elements compare equal.
533  */
534  template<class _Key, class _Compare, class _Alloc>
535    inline bool
536    operator==(const set<_Key,_Compare,_Alloc>& __x,
537               const set<_Key,_Compare,_Alloc>& __y)
538    { return __x._M_t == __y._M_t; }
539
540  /**
541   *  @brief  Set ordering relation.
542   *  @param  x  A %set.
543   *  @param  y  A %set of the same type as @a x.
544   *  @return  True iff @a x is lexicographically less than @a y.
545   *
546   *  This is a total ordering relation.  It is linear in the size of the
547   *  maps.  The elements must be comparable with @c <.
548   *
549   *  See std::lexicographical_compare() for how the determination is made.
550  */
551  template<class _Key, class _Compare, class _Alloc>
552    inline bool
553    operator<(const set<_Key,_Compare,_Alloc>& __x,
554              const set<_Key,_Compare,_Alloc>& __y)
555    { return __x._M_t < __y._M_t; }
556
557  ///  Returns !(x == y).
558  template<class _Key, class _Compare, class _Alloc>
559    inline bool
560    operator!=(const set<_Key,_Compare,_Alloc>& __x,
561               const set<_Key,_Compare,_Alloc>& __y)
562    { return !(__x == __y); }
563
564  ///  Returns y < x.
565  template<class _Key, class _Compare, class _Alloc>
566    inline bool
567    operator>(const set<_Key,_Compare,_Alloc>& __x,
568              const set<_Key,_Compare,_Alloc>& __y)
569    { return __y < __x; }
570
571  ///  Returns !(y < x)
572  template<class _Key, class _Compare, class _Alloc>
573    inline bool
574    operator<=(const set<_Key,_Compare,_Alloc>& __x,
575               const set<_Key,_Compare,_Alloc>& __y)
576    { return !(__y < __x); }
577
578  ///  Returns !(x < y)
579  template<class _Key, class _Compare, class _Alloc>
580    inline bool
581    operator>=(const set<_Key,_Compare,_Alloc>& __x,
582               const set<_Key,_Compare,_Alloc>& __y)
583    { return !(__x < __y); }
584
585  /// See std::set::swap().
586  template<class _Key, class _Compare, class _Alloc>
587    inline void
588    swap(set<_Key,_Compare,_Alloc>& __x, set<_Key,_Compare,_Alloc>& __y)
589    { __x.swap(__y); }
590
591} // namespace std
592
593#endif /* _SET_H */
Note: See TracBrowser for help on using the repository browser.