source: svn/trunk/newcon3bcm2_21bu/toolchain/mips-linux-uclibc/include/linux/reiserfs_fs.h

Last change on this file was 2, checked in by phkim, 11 years ago

1.phkim

  1. revision copy newcon3sk r27
  • Property svn:executable set to *
File size: 76.2 KB
Line 
1/*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
4
5                                /* this file has an amazingly stupid
6                                   name, yura please fix it to be
7                                   reiserfs.h, and merge all the rest
8                                   of our .h files that are in this
9                                   directory into it.  */
10
11
12#ifndef _LINUX_REISER_FS_H
13#define _LINUX_REISER_FS_H
14
15#include <linux/types.h>
16
17/*
18 *  include/linux/reiser_fs.h
19 *
20 *  Reiser File System constants and structures
21 *
22 */
23
24/* in reading the #defines, it may help to understand that they employ
25   the following abbreviations:
26
27   B = Buffer
28   I = Item header
29   H = Height within the tree (should be changed to LEV)
30   N = Number of the item in the node
31   STAT = stat data
32   DEH = Directory Entry Header
33   EC = Entry Count
34   E = Entry number
35   UL = Unsigned Long
36   BLKH = BLocK Header
37   UNFM = UNForMatted node
38   DC = Disk Child
39   P = Path
40
41   These #defines are named by concatenating these abbreviations,
42   where first comes the arguments, and last comes the return value,
43   of the macro.
44
45*/
46
47#define USE_INODE_GENERATION_COUNTER
48
49#define REISERFS_PREALLOCATE
50#define DISPLACE_NEW_PACKING_LOCALITIES
51#define PREALLOCATION_SIZE 9
52
53/* n must be power of 2 */
54#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
55
56// to be ok for alpha and others we have to align structures to 8 byte
57// boundary.
58// FIXME: do not change 4 by anything else: there is code which relies on that
59#define ROUND_UP(x) _ROUND_UP(x,8LL)
60
61/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
62** messages.
63*/
64#define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 
65
66void reiserfs_warning (struct super_block *s, const char * fmt, ...);
67/* assertions handling */
68
69/** always check a condition and panic if it's false. */
70#define RASSERT( cond, format, args... )                                        \
71if( !( cond ) )                                                                 \
72  reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at "  \
73                  __FILE__ ":%i:%s: " format "\n",              \
74                  in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
75
76#if defined( CONFIG_REISERFS_CHECK )
77#define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
78#else
79#define RFALSE( cond, format, args... ) do {;} while( 0 )
80#endif
81
82#define CONSTF __attribute__( ( const ) )
83/*
84 * Disk Data Structures
85 */
86
87/***************************************************************************/
88/*                             SUPER BLOCK                                 */
89/***************************************************************************/
90
91/*
92 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
93 * the version in RAM is part of a larger structure containing fields never written to disk.
94 */
95#define UNSET_HASH 0 // read_super will guess about, what hash names
96                     // in directories were sorted with
97#define TEA_HASH  1
98#define YURA_HASH 2
99#define R5_HASH   3
100#define DEFAULT_HASH R5_HASH
101
102
103struct journal_params {
104    __le32 jp_journal_1st_block;              /* where does journal start from on its
105                                       * device */
106    __le32 jp_journal_dev;            /* journal device st_rdev */
107    __le32 jp_journal_size;           /* size of the journal */
108    __le32 jp_journal_trans_max;              /* max number of blocks in a transaction. */
109    __le32 jp_journal_magic;          /* random value made on fs creation (this
110                                       * was sb_journal_block_count) */
111    __le32 jp_journal_max_batch;              /* max number of blocks to batch into a
112                                       * trans */
113    __le32 jp_journal_max_commit_age;  /* in seconds, how old can an async
114                                       * commit be */
115    __le32 jp_journal_max_trans_age;   /* in seconds, how old can a transaction
116                                       * be */
117};
118
119/* this is the super from 3.5.X, where X >= 10 */
120struct reiserfs_super_block_v1
121{
122    __le32 s_block_count;          /* blocks count         */
123    __le32 s_free_blocks;           /* free blocks count    */
124    __le32 s_root_block;            /* root block number    */
125    struct journal_params s_journal;
126    __le16 s_blocksize;             /* block size */
127    __le16 s_oid_maxsize;          /* max size of object id array, see
128                                    * get_objectid() commentary  */
129    __le16 s_oid_cursize;          /* current size of object id array */
130    __le16 s_umount_state;          /* this is set to 1 when filesystem was
131                                    * umounted, to 2 - when not */   
132    char s_magic[10];              /* reiserfs magic string indicates that
133                                    * file system is reiserfs:
134                                    * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
135    __le16 s_fs_state;             /* it is set to used by fsck to mark which
136                                    * phase of rebuilding is done */
137    __le32 s_hash_function_code;    /* indicate, what hash function is being use
138                                    * to sort names in a directory*/
139    __le16 s_tree_height;           /* height of disk tree */
140    __le16 s_bmap_nr;               /* amount of bitmap blocks needed to address
141                                    * each block of file system */
142    __le16 s_version;               /* this field is only reliable on filesystem
143                                    * with non-standard journal */
144    __le16 s_reserved_for_journal;  /* size in blocks of journal area on main
145                                    * device, we need to keep after
146                                    * making fs with non-standard journal */   
147} __attribute__ ((__packed__));
148
149#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
150
151/* this is the on disk super block */
152struct reiserfs_super_block
153{
154    struct reiserfs_super_block_v1 s_v1;
155    __le32 s_inode_generation;
156    __le32 s_flags;                  /* Right now used only by inode-attributes, if enabled */
157    unsigned char s_uuid[16];       /* filesystem unique identifier */
158    unsigned char s_label[16];      /* filesystem volume label */
159    char s_unused[88] ;             /* zero filled by mkreiserfs and
160                                     * reiserfs_convert_objectid_map_v1()
161                                     * so any additions must be updated
162                                     * there as well. */
163}  __attribute__ ((__packed__));
164
165#define SB_SIZE (sizeof(struct reiserfs_super_block))
166
167#define REISERFS_VERSION_1 0
168#define REISERFS_VERSION_2 2
169
170
171// on-disk super block fields converted to cpu form
172#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
173#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
174#define SB_BLOCKSIZE(s) \
175        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
176#define SB_BLOCK_COUNT(s) \
177        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
178#define SB_FREE_BLOCKS(s) \
179        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
180#define SB_REISERFS_MAGIC(s) \
181        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
182#define SB_ROOT_BLOCK(s) \
183        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
184#define SB_TREE_HEIGHT(s) \
185        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
186#define SB_REISERFS_STATE(s) \
187        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
188#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
189#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
190
191#define PUT_SB_BLOCK_COUNT(s, val) \
192   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
193#define PUT_SB_FREE_BLOCKS(s, val) \
194   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
195#define PUT_SB_ROOT_BLOCK(s, val) \
196   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
197#define PUT_SB_TREE_HEIGHT(s, val) \
198   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
199#define PUT_SB_REISERFS_STATE(s, val) \
200   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
201#define PUT_SB_VERSION(s, val) \
202   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
203#define PUT_SB_BMAP_NR(s, val) \
204   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
205
206
207#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
208#define SB_ONDISK_JOURNAL_SIZE(s) \
209         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
210#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
211         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
212#define SB_ONDISK_JOURNAL_DEVICE(s) \
213         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
214#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
215         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
216
217#define is_block_in_log_or_reserved_area(s, block) \
218         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
219         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
220         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
221         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
222
223
224
225                                /* used by gcc */
226#define REISERFS_SUPER_MAGIC 0x52654973
227                                /* used by file system utilities that
228                                   look at the superblock, etc. */
229#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
230#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
231#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
232
233int is_reiserfs_3_5 (struct reiserfs_super_block * rs);
234int is_reiserfs_3_6 (struct reiserfs_super_block * rs);
235int is_reiserfs_jr (struct reiserfs_super_block * rs);
236
237/* ReiserFS leaves the first 64k unused, so that partition labels have
238   enough space.  If someone wants to write a fancy bootloader that
239   needs more than 64k, let us know, and this will be increased in size.
240   This number must be larger than than the largest block size on any
241   platform, or code will break.  -Hans */
242#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
243#define REISERFS_FIRST_BLOCK unused_define
244#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
245
246/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
247#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
248
249// reiserfs internal error code (used by search_by_key adn fix_nodes))
250#define CARRY_ON      0
251#define REPEAT_SEARCH -1
252#define IO_ERROR      -2
253#define NO_DISK_SPACE -3
254#define NO_BALANCING_NEEDED  (-4)
255#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
256#define QUOTA_EXCEEDED -6
257
258typedef __u32 b_blocknr_t;
259typedef __le32 unp_t;
260
261struct unfm_nodeinfo {
262    unp_t unfm_nodenum;
263    unsigned short unfm_freespace;
264};
265
266/* there are two formats of keys: 3.5 and 3.6
267 */
268#define KEY_FORMAT_3_5 0
269#define KEY_FORMAT_3_6 1
270
271/* there are two stat datas */
272#define STAT_DATA_V1 0
273#define STAT_DATA_V2 1
274
275
276static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
277{
278        return container_of(inode, struct reiserfs_inode_info, vfs_inode);
279}
280
281static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
282{
283        return sb->s_fs_info;
284}
285
286/** this says about version of key of all items (but stat data) the
287    object consists of */
288#define get_inode_item_key_version( inode )                                    \
289    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
290
291#define set_inode_item_key_version( inode, version )                           \
292         ({ if((version)==KEY_FORMAT_3_6)                                      \
293                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
294            else                                                               \
295                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
296
297#define get_inode_sd_version(inode)                                            \
298    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
299
300#define set_inode_sd_version(inode, version)                                   \
301         ({ if((version)==STAT_DATA_V2)                                        \
302                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
303            else                                                               \
304                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
305
306/* This is an aggressive tail suppression policy, I am hoping it
307   improves our benchmarks. The principle behind it is that percentage
308   space saving is what matters, not absolute space saving.  This is
309   non-intuitive, but it helps to understand it if you consider that the
310   cost to access 4 blocks is not much more than the cost to access 1
311   block, if you have to do a seek and rotate.  A tail risks a
312   non-linear disk access that is significant as a percentage of total
313   time cost for a 4 block file and saves an amount of space that is
314   less significant as a percentage of space, or so goes the hypothesis.
315   -Hans */
316#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
317(\
318  (!(n_tail_size)) || \
319  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
320   ( (n_file_size) >= (n_block_size) * 4 ) || \
321   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
322     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
323   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
324     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
325   ( ( (n_file_size) >= (n_block_size) ) && \
326     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
327)
328
329/* Another strategy for tails, this one means only create a tail if all the
330   file would fit into one DIRECT item.
331   Primary intention for this one is to increase performance by decreasing
332   seeking.
333*/   
334#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
335(\
336  (!(n_tail_size)) || \
337  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
338)
339
340
341
342/*
343 * values for s_umount_state field
344 */
345#define REISERFS_VALID_FS    1
346#define REISERFS_ERROR_FS    2
347
348//
349// there are 5 item types currently
350//
351#define TYPE_STAT_DATA 0
352#define TYPE_INDIRECT 1
353#define TYPE_DIRECT 2
354#define TYPE_DIRENTRY 3
355#define TYPE_MAXTYPE 3
356#define TYPE_ANY 15 // FIXME: comment is required
357
358/***************************************************************************/
359/*                       KEY & ITEM HEAD                                   */
360/***************************************************************************/
361
362//
363// directories use this key as well as old files
364//
365struct offset_v1 {
366    __le32 k_offset;
367    __le32 k_uniqueness;
368} __attribute__ ((__packed__));
369
370struct offset_v2 {
371        __le64 v;
372} __attribute__ ((__packed__));
373
374static inline __u16 offset_v2_k_type( const struct offset_v2 *v2 )
375{
376        __u8 type = le64_to_cpu(v2->v) >> 60;
377        return (type <= TYPE_MAXTYPE)?type:TYPE_ANY;
378}
379 
380static inline void set_offset_v2_k_type( struct offset_v2 *v2, int type )
381{
382        v2->v = (v2->v & cpu_to_le64(~0ULL>>4)) | cpu_to_le64((__u64)type<<60);
383}
384 
385static inline loff_t offset_v2_k_offset( const struct offset_v2 *v2 )
386{
387        return le64_to_cpu(v2->v) & (~0ULL>>4);
388}
389
390static inline void set_offset_v2_k_offset( struct offset_v2 *v2, loff_t offset ){
391        offset &= (~0ULL>>4);
392        v2->v = (v2->v & cpu_to_le64(15ULL<<60)) | cpu_to_le64(offset);
393}
394
395/* Key of an item determines its location in the S+tree, and
396   is composed of 4 components */
397struct reiserfs_key {
398    __le32 k_dir_id;    /* packing locality: by default parent
399                          directory object id */
400    __le32 k_objectid;  /* object identifier */
401    union {
402        struct offset_v1 k_offset_v1;
403        struct offset_v2 k_offset_v2;
404    } __attribute__ ((__packed__)) u;
405} __attribute__ ((__packed__));
406
407struct in_core_key {
408    __u32 k_dir_id;    /* packing locality: by default parent
409                          directory object id */
410    __u32 k_objectid;  /* object identifier */
411    __u64 k_offset;
412    __u8 k_type;
413};
414
415struct cpu_key {
416    struct in_core_key on_disk_key;
417    int version;
418    int key_length; /* 3 in all cases but direct2indirect and
419                       indirect2direct conversion */
420};
421
422/* Our function for comparing keys can compare keys of different
423   lengths.  It takes as a parameter the length of the keys it is to
424   compare.  These defines are used in determining what is to be passed
425   to it as that parameter. */
426#define REISERFS_FULL_KEY_LEN     4
427#define REISERFS_SHORT_KEY_LEN    2
428
429/* The result of the key compare */
430#define FIRST_GREATER 1
431#define SECOND_GREATER -1
432#define KEYS_IDENTICAL 0
433#define KEY_FOUND 1
434#define KEY_NOT_FOUND 0
435
436#define KEY_SIZE (sizeof(struct reiserfs_key))
437#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
438
439/* return values for search_by_key and clones */
440#define ITEM_FOUND 1
441#define ITEM_NOT_FOUND 0
442#define ENTRY_FOUND 1
443#define ENTRY_NOT_FOUND 0
444#define DIRECTORY_NOT_FOUND -1
445#define REGULAR_FILE_FOUND -2
446#define DIRECTORY_FOUND -3
447#define BYTE_FOUND 1
448#define BYTE_NOT_FOUND 0
449#define FILE_NOT_FOUND -1
450
451#define POSITION_FOUND 1
452#define POSITION_NOT_FOUND 0
453
454// return values for reiserfs_find_entry and search_by_entry_key
455#define NAME_FOUND 1
456#define NAME_NOT_FOUND 0
457#define GOTO_PREVIOUS_ITEM 2
458#define NAME_FOUND_INVISIBLE 3
459
460/*  Everything in the filesystem is stored as a set of items.  The
461    item head contains the key of the item, its free space (for
462    indirect items) and specifies the location of the item itself
463    within the block.  */
464
465struct item_head
466{
467        /* Everything in the tree is found by searching for it based on
468         * its key.*/
469        struct reiserfs_key ih_key;
470        union {
471                /* The free space in the last unformatted node of an
472                   indirect item if this is an indirect item.  This
473                   equals 0xFFFF iff this is a direct item or stat data
474                   item. Note that the key, not this field, is used to
475                   determine the item type, and thus which field this
476                   union contains. */
477                __le16 ih_free_space_reserved;
478                /* Iff this is a directory item, this field equals the
479                   number of directory entries in the directory item. */
480                __le16 ih_entry_count;
481        } __attribute__ ((__packed__)) u;
482        __le16 ih_item_len;           /* total size of the item body */
483        __le16 ih_item_location;      /* an offset to the item body
484                                      * within the block */
485        __le16 ih_version;           /* 0 for all old items, 2 for new
486                                        ones. Highest bit is set by fsck
487                                        temporary, cleaned after all
488                                        done */
489} __attribute__ ((__packed__));
490/* size of item header     */
491#define IH_SIZE (sizeof(struct item_head))
492
493#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
494#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
495#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
496#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
497#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
498
499#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
500#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
501#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
502#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
503#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
504
505
506#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
507
508#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
509#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
510
511/* these operate on indirect items, where you've got an array of ints
512** at a possibly unaligned location.  These are a noop on ia32
513**
514** p is the array of __u32, i is the index into the array, v is the value
515** to store there.
516*/
517#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
518#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
519
520//
521// in old version uniqueness field shows key type
522//
523#define V1_SD_UNIQUENESS 0
524#define V1_INDIRECT_UNIQUENESS 0xfffffffe
525#define V1_DIRECT_UNIQUENESS 0xffffffff
526#define V1_DIRENTRY_UNIQUENESS 500
527#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
528
529//
530// here are conversion routines
531//
532static inline int uniqueness2type (__u32 uniqueness) CONSTF;
533static inline int uniqueness2type (__u32 uniqueness)
534{
535    switch ((int)uniqueness) {
536    case V1_SD_UNIQUENESS: return TYPE_STAT_DATA;
537    case V1_INDIRECT_UNIQUENESS: return TYPE_INDIRECT;
538    case V1_DIRECT_UNIQUENESS: return TYPE_DIRECT;
539    case V1_DIRENTRY_UNIQUENESS: return TYPE_DIRENTRY;
540    default:
541            reiserfs_warning (NULL, "vs-500: unknown uniqueness %d",
542                              uniqueness);
543        case V1_ANY_UNIQUENESS:
544            return TYPE_ANY;
545    }
546}
547
548static inline __u32 type2uniqueness (int type) CONSTF;
549static inline __u32 type2uniqueness (int type)
550{
551    switch (type) {
552    case TYPE_STAT_DATA: return V1_SD_UNIQUENESS;
553    case TYPE_INDIRECT: return V1_INDIRECT_UNIQUENESS;
554    case TYPE_DIRECT: return V1_DIRECT_UNIQUENESS;
555    case TYPE_DIRENTRY: return V1_DIRENTRY_UNIQUENESS;
556    default:
557            reiserfs_warning (NULL, "vs-501: unknown type %d", type);
558        case TYPE_ANY:
559            return V1_ANY_UNIQUENESS;
560    }
561}
562
563//
564// key is pointer to on disk key which is stored in le, result is cpu,
565// there is no way to get version of object from key, so, provide
566// version to these defines
567//
568static inline loff_t le_key_k_offset (int version, const struct reiserfs_key * key)
569{
570    return (version == KEY_FORMAT_3_5) ?
571        le32_to_cpu( key->u.k_offset_v1.k_offset ) :
572        offset_v2_k_offset( &(key->u.k_offset_v2) );
573}
574
575static inline loff_t le_ih_k_offset (const struct item_head * ih)
576{
577    return le_key_k_offset (ih_version (ih), &(ih->ih_key));
578}
579
580static inline loff_t le_key_k_type (int version, const struct reiserfs_key * key)
581{
582    return (version == KEY_FORMAT_3_5) ?
583        uniqueness2type( le32_to_cpu( key->u.k_offset_v1.k_uniqueness)) :
584        offset_v2_k_type( &(key->u.k_offset_v2) );
585}
586
587static inline loff_t le_ih_k_type (const struct item_head * ih)
588{
589    return le_key_k_type (ih_version (ih), &(ih->ih_key));
590}
591
592
593static inline void set_le_key_k_offset (int version, struct reiserfs_key * key, loff_t offset)
594{
595    (version == KEY_FORMAT_3_5) ?
596        (void)(key->u.k_offset_v1.k_offset = cpu_to_le32 (offset)) : /* jdm check */
597        (void)(set_offset_v2_k_offset( &(key->u.k_offset_v2), offset ));
598}
599
600
601static inline void set_le_ih_k_offset (struct item_head * ih, loff_t offset)
602{
603    set_le_key_k_offset (ih_version (ih), &(ih->ih_key), offset);
604}
605
606
607static inline void set_le_key_k_type (int version, struct reiserfs_key * key, int type)
608{
609    (version == KEY_FORMAT_3_5) ?
610        (void)(key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type2uniqueness(type))):
611        (void)(set_offset_v2_k_type( &(key->u.k_offset_v2), type ));
612}
613static inline void set_le_ih_k_type (struct item_head * ih, int type)
614{
615    set_le_key_k_type (ih_version (ih), &(ih->ih_key), type);
616}
617
618
619#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
620#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
621#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
622#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
623
624//
625// item header has version.
626//
627#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
628#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
629#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
630#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
631
632
633
634//
635// key is pointer to cpu key, result is cpu
636//
637static inline loff_t cpu_key_k_offset (const struct cpu_key * key)
638{
639    return key->on_disk_key.k_offset;
640}
641
642static inline loff_t cpu_key_k_type (const struct cpu_key * key)
643{
644    return key->on_disk_key.k_type;
645}
646
647static inline void set_cpu_key_k_offset (struct cpu_key * key, loff_t offset)
648{
649        key->on_disk_key.k_offset = offset;
650}
651
652static inline void set_cpu_key_k_type (struct cpu_key * key, int type)
653{
654        key->on_disk_key.k_type = type;
655}
656
657static inline void cpu_key_k_offset_dec (struct cpu_key * key)
658{
659        key->on_disk_key.k_offset --;
660}
661
662#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
663#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
664#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
665#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
666
667
668/* are these used ? */
669#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
670#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
671#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
672#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
673
674
675
676
677
678#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
679    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
680          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
681
682/* maximal length of item */ 
683#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
684#define MIN_ITEM_LEN 1
685
686
687/* object identifier for root dir */
688#define REISERFS_ROOT_OBJECTID 2
689#define REISERFS_ROOT_PARENT_OBJECTID 1
690extern struct reiserfs_key root_key;
691
692
693
694
695/*
696 * Picture represents a leaf of the S+tree
697 *  ______________________________________________________
698 * |      |  Array of     |                   |           |
699 * |Block |  Object-Item  |      F r e e      |  Objects- |
700 * | head |  Headers      |     S p a c e     |   Items   |
701 * |______|_______________|___________________|___________|
702 */
703
704/* Header of a disk block.  More precisely, header of a formatted leaf
705   or internal node, and not the header of an unformatted node. */
706struct block_head {       
707  __le16 blk_level;        /* Level of a block in the tree. */
708  __le16 blk_nr_item;      /* Number of keys/items in a block. */
709  __le16 blk_free_space;   /* Block free space in bytes. */
710  __le16 blk_reserved;
711                                /* dump this in v4/planA */
712  struct reiserfs_key  blk_right_delim_key; /* kept only for compatibility */
713};
714
715#define BLKH_SIZE                     (sizeof(struct block_head))
716#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
717#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
718#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
719#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
720#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
721#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
722#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
723#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
724#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
725#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
726
727/*
728 * values for blk_level field of the struct block_head
729 */
730
731#define FREE_LEVEL 0 /* when node gets removed from the tree its
732                        blk_level is set to FREE_LEVEL. It is then
733                        used to see whether the node is still in the
734                        tree */
735
736#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level.*/
737
738/* Given the buffer head of a formatted node, resolve to the block head of that node. */
739#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
740/* Number of items that are in buffer. */
741#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
742#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
743#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
744
745#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
746#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
747#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
748
749
750/* Get right delimiting key. -- little endian */
751#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
752
753/* Does the buffer contain a disk leaf. */
754#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
755
756/* Does the buffer contain a disk internal node */
757#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
758                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
759
760
761
762
763/***************************************************************************/
764/*                             STAT DATA                                   */
765/***************************************************************************/
766
767
768//
769// old stat data is 32 bytes long. We are going to distinguish new one by
770// different size
771//
772struct stat_data_v1
773{
774    __le16 sd_mode;     /* file type, permissions */
775    __le16 sd_nlink;    /* number of hard links */
776    __le16 sd_uid;              /* owner */
777    __le16 sd_gid;              /* group */
778    __le32 sd_size;     /* file size */
779    __le32 sd_atime;    /* time of last access */
780    __le32 sd_mtime;    /* time file was last modified  */
781    __le32 sd_ctime;    /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
782    union {
783        __le32 sd_rdev;
784        __le32 sd_blocks;       /* number of blocks file uses */
785    } __attribute__ ((__packed__)) u;
786    __le32 sd_first_direct_byte; /* first byte of file which is stored
787                                   in a direct item: except that if it
788                                   equals 1 it is a symlink and if it
789                                   equals ~(__u32)0 there is no
790                                   direct item.  The existence of this
791                                   field really grates on me. Let's
792                                   replace it with a macro based on
793                                   sd_size and our tail suppression
794                                   policy.  Someday.  -Hans */
795} __attribute__ ((__packed__));
796
797#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
798#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
799#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
800#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
801#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
802#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
803#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
804#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
805#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
806#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
807#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
808#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
809#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
810#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
811#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
812#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
813#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
814#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
815#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
816#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
817#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
818#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
819#define sd_v1_first_direct_byte(sdp) \
820                                (le32_to_cpu((sdp)->sd_first_direct_byte))
821#define set_sd_v1_first_direct_byte(sdp,v) \
822                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
823
824#include <linux/ext2_fs.h>
825
826/* inode flags stored in sd_attrs (nee sd_reserved) */
827
828/* we want common flags to have the same values as in ext2,
829   so chattr(1) will work without problems */
830#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
831#define REISERFS_APPEND_FL    EXT2_APPEND_FL
832#define REISERFS_SYNC_FL      EXT2_SYNC_FL
833#define REISERFS_NOATIME_FL   EXT2_NOATIME_FL
834#define REISERFS_NODUMP_FL    EXT2_NODUMP_FL
835#define REISERFS_SECRM_FL     EXT2_SECRM_FL
836#define REISERFS_UNRM_FL      EXT2_UNRM_FL
837#define REISERFS_COMPR_FL     EXT2_COMPR_FL
838#define REISERFS_NOTAIL_FL    EXT2_NOTAIL_FL
839
840/* persistent flags that file inherits from the parent directory */
841#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
842                                REISERFS_SYNC_FL |      \
843                                REISERFS_NOATIME_FL |   \
844                                REISERFS_NODUMP_FL |    \
845                                REISERFS_SECRM_FL |     \
846                                REISERFS_COMPR_FL |     \
847                                REISERFS_NOTAIL_FL )
848
849/* Stat Data on disk (reiserfs version of UFS disk inode minus the
850   address blocks) */
851struct stat_data {
852    __le16 sd_mode;     /* file type, permissions */
853    __le16 sd_attrs;     /* persistent inode flags */
854    __le32 sd_nlink;    /* number of hard links */
855    __le64 sd_size;     /* file size */
856    __le32 sd_uid;              /* owner */
857    __le32 sd_gid;              /* group */
858    __le32 sd_atime;    /* time of last access */
859    __le32 sd_mtime;    /* time file was last modified  */
860    __le32 sd_ctime;    /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
861    __le32 sd_blocks;
862    union {
863        __le32 sd_rdev;
864        __le32 sd_generation;
865      //__le32 sd_first_direct_byte;
866      /* first byte of file which is stored in a
867                                       direct item: except that if it equals 1
868                                       it is a symlink and if it equals
869                                       ~(__u32)0 there is no direct item.  The
870                                       existence of this field really grates
871                                       on me. Let's replace it with a macro
872                                       based on sd_size and our tail
873                                       suppression policy? */
874  } __attribute__ ((__packed__)) u;
875} __attribute__ ((__packed__));
876//
877// this is 44 bytes long
878//
879#define SD_SIZE (sizeof(struct stat_data))
880#define SD_V2_SIZE              SD_SIZE
881#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
882#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
883#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
884/* sd_reserved */
885/* set_sd_reserved */
886#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
887#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
888#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
889#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
890#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
891#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
892#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
893#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
894#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
895#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
896#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
897#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
898#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
899#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
900#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
901#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
902#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
903#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
904#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
905#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
906#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
907#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
908
909
910/***************************************************************************/
911/*                      DIRECTORY STRUCTURE                                */
912/***************************************************************************/
913/*
914   Picture represents the structure of directory items
915   ________________________________________________
916   |  Array of     |   |     |        |       |   |
917   | directory     |N-1| N-2 | ....   |   1st |0th|
918   | entry headers |   |     |        |       |   |
919   |_______________|___|_____|________|_______|___|
920                    <----   directory entries         ------>
921
922 First directory item has k_offset component 1. We store "." and ".."
923 in one item, always, we never split "." and ".." into differing
924 items.  This makes, among other things, the code for removing
925 directories simpler. */
926#define SD_OFFSET  0
927#define SD_UNIQUENESS 0
928#define DOT_OFFSET 1
929#define DOT_DOT_OFFSET 2
930#define DIRENTRY_UNIQUENESS 500
931
932/* */
933#define FIRST_ITEM_OFFSET 1
934
935/*
936   Q: How to get key of object pointed to by entry from entry? 
937
938   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
939      of object, entry points to */
940
941/* NOT IMPLEMENTED:   
942   Directory will someday contain stat data of object */
943
944
945
946struct reiserfs_de_head
947{
948  __le32 deh_offset;            /* third component of the directory entry key */
949  __le32 deh_dir_id;            /* objectid of the parent directory of the object, that is referenced
950                                           by directory entry */
951  __le32 deh_objectid;          /* objectid of the object, that is referenced by directory entry */
952  __le16 deh_location;          /* offset of name in the whole item */
953  __le16 deh_state;             /* whether 1) entry contains stat data (for future), and 2) whether
954                                           entry is hidden (unlinked) */
955} __attribute__ ((__packed__));
956#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
957#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
958#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
959#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
960#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
961#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
962
963#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
964#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
965#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
966#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
967#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
968
969/* empty directory contains two entries "." and ".." and their headers */
970#define EMPTY_DIR_SIZE \
971(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
972
973/* old format directories have this size when empty */
974#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
975
976#define DEH_Statdata 0                  /* not used now */
977#define DEH_Visible 2
978
979/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
980#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
981#   define ADDR_UNALIGNED_BITS  (3)
982#endif
983
984/* These are only used to manipulate deh_state.
985 * Because of this, we'll use the ext2_ bit routines,
986 * since they are little endian */
987#ifdef ADDR_UNALIGNED_BITS
988
989#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
990#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
991
992#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
993#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
994#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
995
996#else
997
998#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
999#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
1000#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
1001
1002#endif
1003
1004#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1005#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1006#define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1007#define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1008
1009#define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1010#define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1011#define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1012
1013extern void make_empty_dir_item_v1 (char * body, __le32 dirid, __le32 objid,
1014                                    __le32 par_dirid, __le32 par_objid);
1015extern void make_empty_dir_item (char * body, __le32 dirid, __le32 objid,
1016                                 __le32 par_dirid, __le32 par_objid);
1017
1018/* array of the entry headers */
1019 /* get item body */
1020#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1021#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1022
1023/* length of the directory entry in directory item. This define
1024   calculates length of i-th directory entry using directory entry
1025   locations from dir entry head. When it calculates length of 0-th
1026   directory entry, it uses length of whole item in place of entry
1027   location of the non-existent following entry in the calculation.
1028   See picture above.*/
1029/*
1030#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1031((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1032*/
1033
1034
1035
1036/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1037#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1038
1039
1040/* name by bh, ih and entry_num */
1041#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1042
1043// two entries per block (at least)
1044#define REISERFS_MAX_NAME(block_size) 255
1045
1046
1047   
1048/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1049
1050/* pointer to file name, stored in entry */
1051#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1052
1053/* length of name */
1054#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1055(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1056
1057
1058
1059/* hash value occupies bits from 7 up to 30 */
1060#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1061/* generation number occupies 7 bits starting from 0 up to 6 */
1062#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1063#define MAX_GENERATION_NUMBER  127
1064
1065#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1066
1067
1068/*
1069 * Picture represents an internal node of the reiserfs tree
1070 *  ______________________________________________________
1071 * |      |  Array of     |  Array of         |  Free     |
1072 * |block |    keys       |  pointers         | space     |
1073 * | head |      N        |      N+1          |           |
1074 * |______|_______________|___________________|___________|
1075 */
1076
1077/***************************************************************************/
1078/*                      DISK CHILD                                         */
1079/***************************************************************************/
1080/* Disk child pointer: The pointer from an internal node of the tree
1081   to a node that is on disk. */
1082struct disk_child {
1083  __le32       dc_block_number;              /* Disk child's block number. */
1084  __le16       dc_size;                     /* Disk child's used space.   */
1085  __le16       dc_reserved;
1086};
1087
1088#define DC_SIZE (sizeof(struct disk_child))
1089#define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
1090#define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
1091#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1092#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1093
1094/* Get disk child by buffer header and position in the tree node. */
1095#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1096((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1097
1098/* Get disk child number by buffer header and position in the tree node. */
1099#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1100#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1101
1102 /* maximal value of field child_size in structure disk_child */ 
1103 /* child size is the combined size of all items and their headers */
1104#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1105
1106/* amount of used space in buffer (not including block head) */
1107#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1108
1109/* max and min number of keys in internal node */
1110#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1111#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1112
1113/***************************************************************************/
1114/*                      PATH STRUCTURES AND DEFINES                        */
1115/***************************************************************************/
1116
1117
1118/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1119   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1120   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1121   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1122   position of the block_number of the next node if it is looking through an internal node.  If it
1123   is looking through a leaf node bin_search will find the position of the item which has key either
1124   equal to given key, or which is the maximal key less than the given key. */
1125
1126
1127#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1128#define EXTENDED_MAX_HEIGHT         7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1129#define FIRST_PATH_ELEMENT_OFFSET   2 /* Must be equal to at least 2. */
1130
1131#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1132#define MAX_FEB_SIZE 6   /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1133
1134
1135
1136/* We need to keep track of who the ancestors of nodes are.  When we
1137   perform a search we record which nodes were visited while
1138   descending the tree looking for the node we searched for. This list
1139   of nodes is called the path.  This information is used while
1140   performing balancing.  Note that this path information may become
1141   invalid, and this means we must check it when using it to see if it
1142   is still valid. You'll need to read search_by_key and the comments
1143   in it, especially about decrement_counters_in_path(), to understand
1144   this structure. 
1145
1146Paths make the code so much harder to work with and debug.... An
1147enormous number of bugs are due to them, and trying to write or modify
1148code that uses them just makes my head hurt.  They are based on an
1149excessive effort to avoid disturbing the precious VFS code.:-( The
1150gods only know how we are going to SMP the code that uses them.
1151znodes are the way! */
1152
1153
1154
1155
1156
1157
1158/* Get buffer header at the path by path and path position. */
1159#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1160
1161/* Get position in the element at the path by path and path position. */
1162#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1163
1164
1165#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1166                                /* you know, to the person who didn't
1167                                   write this the macro name does not
1168                                   at first suggest what it does.
1169                                   Maybe POSITION_FROM_PATH_END? Or
1170                                   maybe we should just focus on
1171                                   dumping paths... -Hans */
1172#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1173
1174
1175#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1176
1177/* in do_balance leaf has h == 0 in contrast with path structure,
1178   where root has level == 0. That is why we need these defines */
1179#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1180#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)                  /* tb->F[h] or tb->S[0]->b_parent */
1181#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))   
1182#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)               /* tb->S[h]->b_item_order */
1183
1184#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1185
1186#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1187#define get_ih(path) PATH_PITEM_HEAD(path)
1188#define get_item_pos(path) PATH_LAST_POSITION(path)
1189#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1190#define item_moved(ih,path) comp_items(ih, path)
1191#define path_changed(ih,path) comp_items (ih, path)
1192
1193
1194/***************************************************************************/
1195/*                       MISC                                              */
1196/***************************************************************************/
1197
1198/* Size of pointer to the unformatted node. */
1199#define UNFM_P_SIZE (sizeof(unp_t))
1200#define UNFM_P_SHIFT 2
1201
1202// in in-core inode key is stored on le form
1203#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1204
1205#define MAX_UL_INT 0xffffffff
1206#define MAX_INT    0x7ffffff
1207#define MAX_US_INT 0xffff
1208
1209// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1210#define U32_MAX (~(__u32)0)
1211
1212static inline loff_t max_reiserfs_offset (struct inode * inode)
1213{
1214    if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1215        return (loff_t)U32_MAX;
1216
1217    return (loff_t)((~(__u64)0) >> 4);
1218}
1219
1220
1221/*#define MAX_KEY_UNIQUENESS    MAX_UL_INT*/
1222#define MAX_KEY_OBJECTID        MAX_UL_INT
1223
1224
1225#define MAX_B_NUM  MAX_UL_INT
1226#define MAX_FC_NUM MAX_US_INT
1227
1228
1229/* the purpose is to detect overflow of an unsigned short */
1230#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1231
1232
1233/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1234#define REISERFS_KERNEL_MEM             0       /* reiserfs kernel memory mode  */
1235#define REISERFS_USER_MEM               1       /* reiserfs user memory mode            */
1236
1237#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1238#define get_generation(s) atomic_read (&fs_generation(s))
1239#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1240#define __fs_changed(gen,s) (gen != get_generation (s))
1241#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1242
1243
1244/***************************************************************************/
1245/*                  FIXATE NODES                                           */
1246/***************************************************************************/
1247
1248#define VI_TYPE_LEFT_MERGEABLE 1
1249#define VI_TYPE_RIGHT_MERGEABLE 2
1250
1251/* To make any changes in the tree we always first find node, that
1252   contains item to be changed/deleted or place to insert a new
1253   item. We call this node S. To do balancing we need to decide what
1254   we will shift to left/right neighbor, or to a new node, where new
1255   item will be etc. To make this analysis simpler we build virtual
1256   node. Virtual node is an array of items, that will replace items of
1257   node S. (For instance if we are going to delete an item, virtual
1258   node does not contain it). Virtual node keeps information about
1259   item sizes and types, mergeability of first and last items, sizes
1260   of all entries in directory item. We use this array of items when
1261   calculating what we can shift to neighbors and how many nodes we
1262   have to have if we do not any shiftings, if we shift to left/right
1263   neighbor or to both. */
1264struct virtual_item
1265{
1266    int vi_index; // index in the array of item operations
1267    unsigned short vi_type;     // left/right mergeability
1268    unsigned short vi_item_len;           /* length of item that it will have after balancing */
1269    struct item_head * vi_ih;
1270    const char * vi_item;     // body of item (old or new)
1271    const void * vi_new_data; // 0 always but paste mode
1272    void * vi_uarea;    // item specific area
1273};
1274
1275
1276struct virtual_node
1277{
1278  char * vn_free_ptr;           /* this is a pointer to the free space in the buffer */
1279  unsigned short vn_nr_item;    /* number of items in virtual node */
1280  short vn_size;                /* size of node , that node would have if it has unlimited size and no balancing is performed */
1281  short vn_mode;                /* mode of balancing (paste, insert, delete, cut) */
1282  short vn_affected_item_num; 
1283  short vn_pos_in_item;
1284  struct item_head * vn_ins_ih; /* item header of inserted item, 0 for other modes */
1285  const void * vn_data;
1286  struct virtual_item * vn_vi;  /* array of items (including a new one, excluding item to be deleted) */
1287};
1288
1289/* used by directory items when creating virtual nodes */
1290struct direntry_uarea {
1291    int flags;
1292    __u16 entry_count;
1293    __u16 entry_sizes[1];
1294} __attribute__ ((__packed__)) ;
1295
1296
1297/***************************************************************************/
1298/*                  TREE BALANCE                                           */
1299/***************************************************************************/
1300
1301/* This temporary structure is used in tree balance algorithms, and
1302   constructed as we go to the extent that its various parts are
1303   needed.  It contains arrays of nodes that can potentially be
1304   involved in the balancing of node S, and parameters that define how
1305   each of the nodes must be balanced.  Note that in these algorithms
1306   for balancing the worst case is to need to balance the current node
1307   S and the left and right neighbors and all of their parents plus
1308   create a new node.  We implement S1 balancing for the leaf nodes
1309   and S0 balancing for the internal nodes (S1 and S0 are defined in
1310   our papers.)*/
1311
1312#define MAX_FREE_BLOCK 7        /* size of the array of buffers to free at end of do_balance */
1313
1314/* maximum number of FEB blocknrs on a single level */
1315#define MAX_AMOUNT_NEEDED 2
1316
1317
1318/* These are modes of balancing */
1319
1320/* When inserting an item. */
1321#define M_INSERT        'i'
1322/* When inserting into (directories only) or appending onto an already
1323   existant item. */
1324#define M_PASTE         'p'
1325/* When deleting an item. */
1326#define M_DELETE        'd'
1327/* When truncating an item or removing an entry from a (directory) item. */
1328#define M_CUT           'c'
1329
1330/* used when balancing on leaf level skipped (in reiserfsck) */
1331#define M_INTERNAL      'n'
1332
1333/* When further balancing is not needed, then do_balance does not need
1334   to be called. */
1335#define M_SKIP_BALANCING                's'
1336#define M_CONVERT       'v'
1337
1338/* modes of leaf_move_items */
1339#define LEAF_FROM_S_TO_L 0
1340#define LEAF_FROM_S_TO_R 1
1341#define LEAF_FROM_R_TO_L 2
1342#define LEAF_FROM_L_TO_R 3
1343#define LEAF_FROM_S_TO_SNEW 4
1344
1345#define FIRST_TO_LAST 0
1346#define LAST_TO_FIRST 1
1347
1348
1349/* there are 4 types of items: stat data, directory item, indirect, direct.
1350+-------------------+------------+--------------+------------+
1351|                   |  k_offset  | k_uniqueness | mergeable? |
1352+-------------------+------------+--------------+------------+
1353|     stat data     |   0        |      0       |   no       |
1354+-------------------+------------+--------------+------------+
1355| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       |
1356| non 1st directory | hash value |              |   yes      |
1357|     item          |            |              |            |
1358+-------------------+------------+--------------+------------+
1359| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1360+-------------------+------------+--------------+------------+
1361| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1362+-------------------+------------+--------------+------------+
1363*/
1364
1365struct item_operations {
1366    int (*bytes_number) (struct item_head * ih, int block_size);
1367    void (*decrement_key) (struct cpu_key *);
1368    int (*is_left_mergeable) (struct reiserfs_key * ih, unsigned long bsize);
1369    void (*print_item) (struct item_head *, char * item);
1370    void (*check_item) (struct item_head *, char * item);
1371
1372    int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 
1373                      int is_affected, int insert_size);
1374    int (*check_left) (struct virtual_item * vi, int free, 
1375                            int start_skip, int end_skip);
1376    int (*check_right) (struct virtual_item * vi, int free);
1377    int (*part_size) (struct virtual_item * vi, int from, int to);
1378    int (*unit_num) (struct virtual_item * vi);
1379    void (*print_vi) (struct virtual_item * vi);
1380};
1381
1382
1383extern struct item_operations * item_ops [TYPE_ANY + 1];
1384
1385#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1386#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1387#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1388#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1389#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1390#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1391#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1392#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1393#define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
1394#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1395
1396
1397
1398#define COMP_SHORT_KEYS comp_short_keys
1399
1400/* number of blocks pointed to by the indirect item */
1401#define I_UNFM_NUM(p_s_ih)      ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1402
1403/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1404#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1405
1406/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1407
1408
1409/* get the item header */ 
1410#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1411
1412/* get key */
1413#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1414
1415/* get the key */
1416#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1417
1418/* get item body */
1419#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1420
1421/* get the stat data by the buffer header and the item order */
1422#define B_N_STAT_DATA(bh,nr) \
1423( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1424
1425    /* following defines use reiserfs buffer header and item header */
1426
1427/* get stat-data */
1428#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1429
1430// this is 3976 for size==4096
1431#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1432
1433/* indirect items consist of entries which contain blocknrs, pos
1434   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1435   blocknr contained by the entry pos points to */
1436#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1437#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1438
1439struct reiserfs_iget_args {
1440    __u32 objectid ;
1441    __u32 dirid ;
1442} ;
1443
1444/***************************************************************************/
1445/*                    FUNCTION DECLARATIONS                                */
1446/***************************************************************************/
1447
1448#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1449
1450#define journal_trans_half(blocksize) \
1451        ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1452
1453/* journal.c see journal.c for all the comments here */
1454
1455/* first block written in a commit.  */
1456struct reiserfs_journal_desc {
1457  __le32 j_trans_id ;                   /* id of commit */
1458  __le32 j_len ;                        /* length of commit. len +1 is the commit block */
1459  __le32 j_mount_id ;                           /* mount id of this trans*/
1460  __le32 j_realblock[1] ; /* real locations for each block */
1461} ;
1462
1463#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1464#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1465#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1466
1467#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1468#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1469#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1470
1471/* last block written in a commit */
1472struct reiserfs_journal_commit {
1473  __le32 j_trans_id ;                   /* must match j_trans_id from the desc block */
1474  __le32 j_len ;                        /* ditto */
1475  __le32 j_realblock[1] ; /* real locations for each block */
1476} ;
1477
1478#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1479#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1480#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1481
1482#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1483#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1484
1485/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1486** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1487** and this transaction does not need to be replayed.
1488*/
1489struct reiserfs_journal_header {
1490  __le32 j_last_flush_trans_id ;                /* id of last fully flushed transaction */
1491  __le32 j_first_unflushed_offset ;      /* offset in the log of where to start replay after a crash */
1492  __le32 j_mount_id ;
1493  /* 12 */ struct journal_params jh_journal;
1494} ;
1495
1496/* biggest tunable defines are right here */
1497#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1498#define JOURNAL_TRANS_MAX_DEFAULT 1024   /* biggest possible single transaction, don't change for now (8/3/99) */
1499#define JOURNAL_TRANS_MIN_DEFAULT 256
1500#define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1501#define JOURNAL_MIN_RATIO 2
1502#define JOURNAL_MAX_COMMIT_AGE 30
1503#define JOURNAL_MAX_TRANS_AGE 30
1504#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1505#ifdef CONFIG_QUOTA
1506#define REISERFS_QUOTA_TRANS_BLOCKS 2   /* We need to update data and inode (atime) */
1507#define REISERFS_QUOTA_INIT_BLOCKS (DQUOT_MAX_WRITES*(JOURNAL_PER_BALANCE_CNT+2)+1)     /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1508#else
1509#define REISERFS_QUOTA_TRANS_BLOCKS 0
1510#define REISERFS_QUOTA_INIT_BLOCKS 0
1511#endif
1512
1513/* both of these can be as low as 1, or as high as you want.  The min is the
1514** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1515** as needed, and released when transactions are committed.  On release, if
1516** the current number of nodes is > max, the node is freed, otherwise,
1517** it is put on a free list for faster use later.
1518*/
1519#define REISERFS_MIN_BITMAP_NODES 10
1520#define REISERFS_MAX_BITMAP_NODES 100
1521
1522#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1523#define JBH_HASH_MASK 8191
1524
1525#define _jhashfn(sb,block)      \
1526        (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1527         (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1528#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1529
1530// We need these to make journal.c code more readable
1531#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1532#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1533#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1534
1535void reiserfs_commit_for_inode(struct inode *) ;
1536void reiserfs_update_inode_transaction(struct inode *) ;
1537void reiserfs_wait_on_write_block(struct super_block *s) ;
1538void reiserfs_block_writes(struct reiserfs_transaction_handle *th) ;
1539void reiserfs_allow_writes(struct super_block *s) ;
1540void reiserfs_check_lock_depth(char *caller) ;
1541int journal_init(struct super_block *, const char * j_dev_name, int old_format) ;
1542int journal_release(struct reiserfs_transaction_handle*, struct super_block *) ;
1543int journal_release_error(struct reiserfs_transaction_handle*, struct super_block *) ;
1544int journal_end(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1545int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, unsigned long) ;
1546int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr) ;
1547int push_journal_writer(char *w) ;
1548int pop_journal_writer(int windex) ;
1549int journal_transaction_should_end(struct reiserfs_transaction_handle *, int) ;
1550int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr, int searchall, b_blocknr_t *next) ;
1551int journal_begin(struct reiserfs_transaction_handle *, struct super_block *p_s_sb, unsigned long) ;
1552void flush_async_commits(struct super_block *p_s_sb) ;
1553
1554int reiserfs_remove_page_from_flush_list(struct reiserfs_transaction_handle *,
1555                                         struct inode *) ;
1556
1557int reiserfs_allocate_list_bitmaps(struct super_block *s, struct reiserfs_list_bitmap *, int) ;
1558
1559
1560void add_save_link (struct reiserfs_transaction_handle * th,
1561                                        struct inode * inode, int truncate);
1562void remove_save_link (struct inode * inode, int truncate);
1563
1564/* objectid.c */
1565__u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th);
1566void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, __u32 objectid_to_release);
1567int reiserfs_convert_objectid_map_v1(struct super_block *) ;
1568
1569
1570// first key is in cpu form, second - le
1571extern inline int comp_keys (const struct key * le_key, 
1572                             const struct cpu_key * cpu_key);
1573extern inline int  comp_short_keys (const struct key * le_key, 
1574                                    const struct cpu_key * cpu_key);
1575extern inline void le_key2cpu_key (struct cpu_key * to, const struct key * from);
1576
1577// both are cpu keys
1578extern inline int comp_cpu_keys (const struct cpu_key *, const struct cpu_key *);
1579extern inline int comp_short_cpu_keys (const struct cpu_key *, 
1580                                       const struct cpu_key *);
1581extern inline void cpu_key2cpu_key (struct cpu_key *, const struct cpu_key *);
1582
1583// both are in le form
1584extern inline int comp_le_keys (const struct key *, const struct key *);
1585extern inline int comp_short_le_keys (const struct key *, const struct key *);
1586
1587//
1588// get key version from on disk key - kludge
1589//
1590static inline int le_key_version (const struct key * key)
1591{
1592    int type;
1593   
1594    type = offset_v2_k_type( &(key->u.k_offset_v2));
1595    if (type != TYPE_DIRECT && type != TYPE_INDIRECT && type != TYPE_DIRENTRY)
1596        return KEY_FORMAT_3_5;
1597
1598    return KEY_FORMAT_3_6;
1599       
1600}
1601
1602
1603static inline void copy_key (struct reiserfs_key *to, const struct reiserfs_key *from)
1604{
1605    memcpy (to, from, KEY_SIZE);
1606}
1607
1608
1609inline int bin_search (const void * p_v_key, const void * p_v_base, 
1610                                           int p_n_num, int p_n_width, int * p_n_pos);
1611int search_by_key (struct super_block *, const struct cpu_key *, 
1612                                   struct path *, int);
1613#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1614int search_for_position_by_key (struct super_block * p_s_sb, 
1615                                                                const struct cpu_key * p_s_cpu_key, 
1616                                                                struct path * p_s_search_path);
1617void decrement_counters_in_path (struct path * p_s_search_path);
1618void pathrelse (struct path * p_s_search_path);
1619int reiserfs_check_path(struct path *p) ;
1620void pathrelse_and_restore (struct super_block *s, struct path * p_s_search_path);
1621
1622int reiserfs_insert_item (struct reiserfs_transaction_handle *th, 
1623                          struct path * path, 
1624                          const struct cpu_key * key,
1625                          struct item_head * ih,
1626                          struct inode *inode, const char * body);
1627
1628int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th,
1629                              struct path * path,
1630                              const struct cpu_key * key,
1631                              struct inode *inode,
1632                              const char * body, int paste_size);
1633
1634int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th,
1635                            struct path * path,
1636                            struct cpu_key * key,
1637                            struct inode * inode,
1638                            struct page *page,
1639                            loff_t new_file_size);
1640
1641void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th,
1642                        struct inode *inode, struct reiserfs_key * key);
1643int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * p_s_inode);
1644int reiserfs_do_truncate (struct reiserfs_transaction_handle *th,
1645                           struct  inode * p_s_inode, struct page *, 
1646                           int update_timestamps);
1647
1648#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1649#define file_size(inode) ((inode)->i_size)
1650#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1651
1652#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1653!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1654
1655void padd_item (char * item, int total_length, int length);
1656
1657/* inode.c */
1658/* args for the create parameter of reiserfs_get_block */
1659#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1660#define GET_BLOCK_CREATE 1    /* add anything you need to find block */
1661#define GET_BLOCK_NO_HOLE 2   /* return -ENOENT for file holes */
1662#define GET_BLOCK_READ_DIRECT 4  /* read the tail if indirect item not found */
1663#define GET_BLOCK_NO_ISEM     8 /* i_sem is not held, don't preallocate */
1664#define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
1665
1666int restart_transaction(struct reiserfs_transaction_handle *th, struct inode *inode, struct path *path);
1667void reiserfs_read_locked_inode(struct inode * inode, struct reiserfs_iget_args *args) ;
1668int reiserfs_find_actor(struct inode * inode, void *p) ;
1669int reiserfs_init_locked_inode(struct inode * inode, void *p) ;
1670void reiserfs_delete_inode (struct inode * inode);
1671int reiserfs_write_inode (struct inode * inode, int) ;
1672int reiserfs_get_block (struct inode * inode, sector_t block, struct buffer_head * bh_result, int create);
1673struct dentry *reiserfs_get_dentry(struct super_block *, void *) ;
1674struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1675                                     int len, int fhtype,
1676                                  int (*acceptable)(void *contect, struct dentry *de),
1677                                  void *context) ;
1678int reiserfs_encode_fh( struct dentry *dentry, __u32 *data, int *lenp, 
1679                                                int connectable );
1680
1681int reiserfs_truncate_file(struct inode *, int update_timestamps) ;
1682void make_cpu_key (struct cpu_key * cpu_key, struct inode * inode, loff_t offset,
1683                   int type, int key_length);
1684void make_le_item_head (struct item_head * ih, const struct cpu_key * key, 
1685                        int version,
1686                        loff_t offset, int type, int length, int entry_count);
1687struct inode * reiserfs_iget (struct super_block * s, 
1688                              const struct cpu_key * key);
1689
1690
1691int reiserfs_new_inode (struct reiserfs_transaction_handle *th, 
1692                                   struct inode * dir, int mode, 
1693                                   const char * symname, loff_t i_size,
1694                                   struct dentry *dentry, struct inode *inode);
1695
1696void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1697                              struct inode * inode, loff_t size);
1698
1699static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1700                                      struct inode *inode)
1701{
1702    reiserfs_update_sd_size(th, inode, inode->i_size) ;
1703}
1704
1705void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode );
1706void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs );
1707int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1708
1709/* namei.c */
1710inline void set_de_name_and_namelen (struct reiserfs_dir_entry * de);
1711int search_by_entry_key (struct super_block * sb, const struct cpu_key * key, 
1712                         struct path * path, 
1713                         struct reiserfs_dir_entry * de);
1714struct dentry *reiserfs_get_parent(struct dentry *) ;
1715/* procfs.c */
1716
1717#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1718#define REISERFS_PROC_INFO
1719#else
1720#undef REISERFS_PROC_INFO
1721#endif
1722
1723int reiserfs_proc_info_init( struct super_block *sb );
1724int reiserfs_proc_info_done( struct super_block *sb );
1725struct proc_dir_entry *reiserfs_proc_register_global( char *name, 
1726                                                                                                          read_proc_t *func );
1727void reiserfs_proc_unregister_global( const char *name );
1728int reiserfs_proc_info_global_init( void );
1729int reiserfs_proc_info_global_done( void );
1730int reiserfs_global_version_in_proc( char *buffer, char **start, off_t offset,
1731                                                                         int count, int *eof, void *data );
1732
1733#if defined( REISERFS_PROC_INFO )
1734
1735#define PROC_EXP( e )   e
1736
1737#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1738#define PROC_INFO_MAX( sb, field, value )                                                               \
1739    __PINFO( sb ).field =                                                                                               \
1740        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1741#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1742#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1743#define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
1744    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
1745    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
1746    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1747#else
1748#define PROC_EXP( e )
1749#define VOID_V ( ( void ) 0 )
1750#define PROC_INFO_MAX( sb, field, value ) VOID_V
1751#define PROC_INFO_INC( sb, field ) VOID_V
1752#define PROC_INFO_ADD( sb, field, val ) VOID_V
1753#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1754#endif
1755
1756/* bitmap.c */
1757
1758/* structure contains hints for block allocator, and it is a container for
1759 * arguments, such as node, search path, transaction_handle, etc. */
1760 struct __reiserfs_blocknr_hint {
1761     struct inode * inode;              /* inode passed to allocator, if we allocate unf. nodes */
1762     long block;                        /* file offset, in blocks */
1763     struct in_core_key key;
1764     struct path * path;                /* search path, used by allocator to deternine search_start by
1765                                         * various ways */
1766     struct reiserfs_transaction_handle * th; /* transaction handle is needed to log super blocks and
1767                                               * bitmap blocks changes  */
1768     b_blocknr_t beg, end;
1769     b_blocknr_t search_start;          /* a field used to transfer search start value (block number)
1770                                         * between different block allocator procedures
1771                                         * (determine_search_start() and others) */
1772    int prealloc_size;                  /* is set in determine_prealloc_size() function, used by underlayed
1773                                         * function that do actual allocation */
1774
1775    unsigned formatted_node:1;          /* the allocator uses different polices for getting disk space for
1776                                         * formatted/unformatted blocks with/without preallocation */
1777    unsigned preallocate:1;
1778};
1779
1780typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
1781
1782int reiserfs_parse_alloc_options (struct super_block *, char *);
1783void reiserfs_init_alloc_options (struct super_block *s);
1784
1785/*
1786 * given a directory, this will tell you what packing locality
1787 * to use for a new object underneat it.  The locality is returned
1788 * in disk byte order (le).
1789 */
1790__le32 reiserfs_choose_packing(struct inode *dir);
1791
1792int is_reusable (struct super_block * s, b_blocknr_t block, int bit_value);
1793void reiserfs_free_block (struct reiserfs_transaction_handle *th, struct inode *, b_blocknr_t, int for_unformatted);
1794int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t * , int, int);
1795
1796
1797extern inline int reiserfs_new_unf_blocknrs (struct reiserfs_transaction_handle *th,
1798                                             struct inode *inode,
1799                                             b_blocknr_t *new_blocknrs,
1800                                             struct path * path, long block)
1801{
1802    reiserfs_blocknr_hint_t hint = {
1803        .th = th,
1804        .path = path,
1805        .inode = inode,
1806        .block = block,
1807        .formatted_node = 0,
1808        .preallocate = 0
1809    };
1810    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1811}
1812
1813#ifdef REISERFS_PREALLOCATE
1814extern inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle *th,
1815                                             struct inode * inode,
1816                                             b_blocknr_t *new_blocknrs,
1817                                             struct path * path, long block)
1818{
1819    reiserfs_blocknr_hint_t hint = {
1820        .th = th,
1821        .path = path,
1822        .inode = inode,
1823        .block = block,
1824        .formatted_node = 0,
1825        .preallocate = 1
1826    };
1827    return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
1828}
1829
1830void reiserfs_discard_prealloc (struct reiserfs_transaction_handle *th, 
1831                                struct inode * inode);
1832void reiserfs_discard_all_prealloc (struct reiserfs_transaction_handle *th);
1833#endif
1834void reiserfs_claim_blocks_to_be_allocated( struct super_block *sb, int blocks);
1835void reiserfs_release_claimed_blocks( struct super_block *sb, int blocks);
1836int reiserfs_can_fit_pages(struct super_block *sb);
1837
1838/* hashes.c */
1839__u32 keyed_hash (const signed char *msg, int len);
1840__u32 yura_hash (const signed char *msg, int len);
1841__u32 r5_hash (const signed char *msg, int len);
1842
1843/* the ext2 bit routines adjust for big or little endian as
1844** appropriate for the arch, so in our laziness we use them rather
1845** than using the bit routines they call more directly.  These
1846** routines must be used when changing on disk bitmaps.  */
1847#define reiserfs_test_and_set_le_bit   ext2_set_bit
1848#define reiserfs_test_and_clear_le_bit ext2_clear_bit
1849#define reiserfs_test_le_bit           ext2_test_bit
1850#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
1851
1852/* sometimes reiserfs_truncate may require to allocate few new blocks
1853   to perform indirect2direct conversion. People probably used to
1854   think, that truncate should work without problems on a filesystem
1855   without free disk space. They may complain that they can not
1856   truncate due to lack of free disk space. This spare space allows us
1857   to not worry about it. 500 is probably too much, but it should be
1858   absolutely safe */
1859#define SPARE_SPACE 500
1860
1861
1862/* prototypes from ioctl.c */
1863int reiserfs_ioctl (struct inode * inode, struct file * filp, 
1864                    unsigned int cmd, unsigned long arg);
1865 
1866/* ioctl's command */
1867#define REISERFS_IOC_UNPACK             _IOW(0xCD,1,long)
1868/* define following flags to be the same as in ext2, so that chattr(1),
1869   lsattr(1) will work with us. */
1870#define REISERFS_IOC_GETFLAGS           EXT2_IOC_GETFLAGS
1871#define REISERFS_IOC_SETFLAGS           EXT2_IOC_SETFLAGS
1872#define REISERFS_IOC_GETVERSION         EXT2_IOC_GETVERSION
1873#define REISERFS_IOC_SETVERSION         EXT2_IOC_SETVERSION
1874
1875/* Locking primitives */
1876/* Right now we are still falling back to (un)lock_kernel, but eventually that
1877   would evolve into real per-fs locks */
1878#define reiserfs_write_lock( sb ) lock_kernel()
1879#define reiserfs_write_unlock( sb ) unlock_kernel()
1880                                 
1881/* xattr stuff */
1882#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
1883
1884#endif /* _LINUX_REISER_FS_H */
1885
1886
Note: See TracBrowser for help on using the repository browser.